RSA, Quantum Computing

8 May 2025 Lecture 6

Some Slide Credits: Steve Zdancewic (UPenn)

Topics for Today

- RSA Algorithm
 - Homomorphic Property
- Quantum and Post-Quantum Cryptography

- Sources:
 - HAC 8.2, 10.1-10.3
 - NIST SP 800-38D

Homomorphic Property

RSA is exponentiation, so preserves mathematical properties

Public key n=3337, e=79Private key n=3337, d=1019

Message1: 75 (K)

Message2: 39 (')

Message1: Encrypted $75^{79} mod 3337 = 2213$

Message2 Encrypted $39^{79} mod 3337 = 2739$

 $2213 \times 2739 \ mod \ 3337 = 1415$

Message1 \times Message2:75 \times 39 = 2925

Message1×Message2 Encrypted: $2925^{79} mod 3337 = 1415$

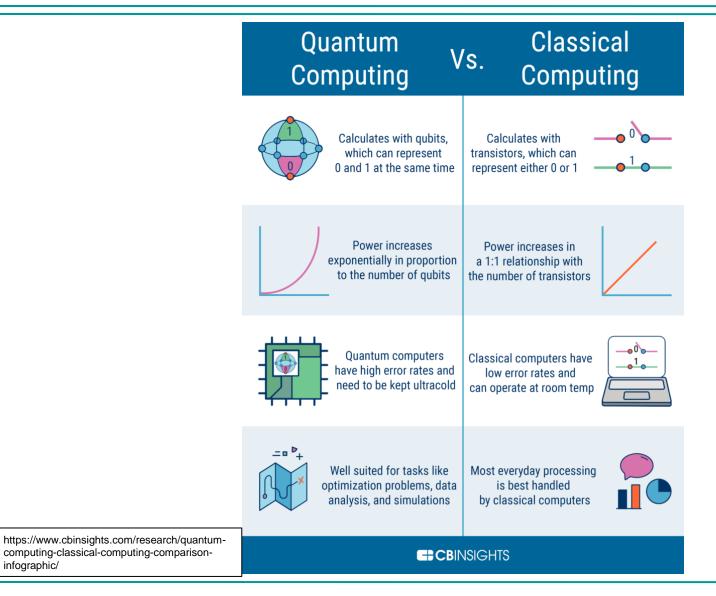
Homomorphic Property (!)

- In short: $(m_1 \times m_2)^e \equiv m_1^e \times m_2^e \equiv c_1 \times c_2 \pmod{n}$
- Means that messages are not totally random!

Solutions:

Fixed message formats

Will get ruined by multiplication


Padding algorithms (PKCS1 and OAEP)

 Helps also with IND-CPA

So Far

- RSA Algorithm
 - Homomorphic Property
- Quantum and Post-Quantum Cryptography

Quantum Problems?

infographic/

Quantum Algorithms

Shor's Algorithm

- Attacks RSA and Elliptical Curve
- Theory Billions of operations on thousands of qubits
- Fault tolerant trillions of operations on millions of qubits

Grover's Algorithm

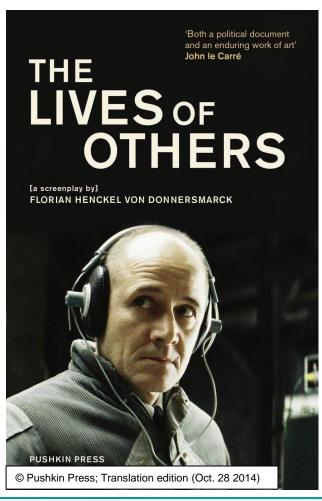
- Search unordered database quickly
- Reduces N to \sqrt{N} in runtime

RSA and Quantum Computers

RSA security is based on how long it takes to factor very large numbers

Shor's algorithm for quantum computers can factor numbers very fast

- 2021 paper showed how to factor 2048 RSA key in 8 hours
- Need ~20M qubits
- Max qubit size today is 70


How long until quantum computers reach millions of qubits?

- 5 years?
- 20 years?
- 25 years?

Research and governments working on post-quantum algorithms today

Record Now Decrypt Later

Today

When a Quantum Computer Arrives

Post Quantum Crypto

Code based encryption

- Error correcting algorithms
- Intentionally introduce errors
- Keys are big 1MB

Lattices

- Encryption 8KB public keys
- Signatures too

Multivariate quadratic equation signatures

- Small signatures, very complicated
- $a_i + \sum_j b_{i,j} x_j + \sum_{j < k} c_{i,j,k} x_j x_k$
- $a_i, b_{i,j}, c_{i,j,k} \in \mathbf{F}_2$

Hash based signatures

- One time signatures
- Can organize as Merkle Tree for efficiency

Standardizing Post-Quantum

2016

- NIST issues call for proposals for Quantum Safe Crypto
- 8 Classes of Algorithms
- 82 Algorithms submitted

2019 Round 2

- 6 Classes
- 26 Algorithms

2020-1 Round 3

- 3 Classes
- 7 finalists
- 8 Alternatives

2024 PQC First Round Standards

Public/Private Keys

 Lattice Based and Learning with Errors – CRYSTALS-Kyber

Digital Signatures

- Lattice Based CRYSTALS-Dilithium, FALCON
- Hash based SPHINCS+

In the Pipeline

Backup Public/Private

- Code-based HQC
- In case CRYSTALS-Kyber has problems

Additional Digital Signature

Туре	Signature
Lattice	HAWK
Code-Based	CROSS LESS
MPC in the Head	Mirath MQOM PERK RYDE SDitH
Multivariate	MAYO QR-UOV SNOVA UOV
Supersingular Eliptic Curve Isogeny	SQIsign
Symmetric based	FAEST

Conclusion

- RSA Algorithm
 - Homomorphic Property
- Quantum and Post-Quantum Cryptography