BGP and **BGP** Security

16 March 2025 Lecture 1

Inter-AS Routing

Idea: Provide an additional way to hierarchically aggregate routing information is a large internet.

We need to find routes to destinations

- What are destinations? IP Prefixes (12.X.X.X) (CIDR)
- What are nodes?
 AS (how many are there?)
- What are links? Connections and Business Relationships

Challenges for Inter-AS Routing

Scale (as of Apr 2024)

- Prefixes: 969,970 (no CIDR) or 542,956 (CIDR aggregated) and growing
- ASes: 75,852 visible ones, and growing
- Routers: at least in the millions...
- Border routers must know how to get anywhere in the world!

Coordination with intra-AS protocols (OSPF)

How to inject external routes to OSPF database

Challenges for Inter-AS Routing

Policy

- I want control over where I send traffic
- ... and who send traffic through my AS why?
- AS don't want to expose internal topologies
- ... or my business relations with neighbors

Trust:

- Provider A might be unwilling to believe advertisements from provider B
- See: http://www.cidr-report.org/as2.0/#Bogons

Example ASes (from cidr-report.org)

- AS11 HARVARD Harvard University, US
- AS39 DNIC-AS-00039 DoD Network Information Center, US
- AS5540 The Israel Electric Corporation Limited,IL
- AS5585 IIX-ASN Israel Internet Association, IL
- AS6810 BEZEK "Bezeq"- THE ISRAEL TELECOMMUNICATION CORP. LTD.,IL
- AS8738 VISA-ISRAEL-AS Israel Credit Cards Ltd,IL
- AS8867 TEHILA-AS Government of Israel, IL
- AS12736 IAA-AS Israel Airports Authority, IL
- AS21486 SYNAMEDIA-AS Synamedia Israel Technologies Ltd, IL
- AS34380 AMDOCS AMDOCS (ISRAEL) LTD,IL
- AS43423 ISRAEL-POST-LTD Israel Postal Company Ltd, IL
- AS1680 NV-ASN 013 NetVision Ltd., IL
- AS8584 BARAK Netvision 013 Barak Barak Network, IL
- AS9117 CELLCOM-AS 013 NetVision Ltd, IL
- AS7432 EGENIUS Evil Geniuses for a Better Tomorrow, US
- AS8551 BEZEQ-INTERNATIONAL-AS Bezegint Internet Backbone, IL

Routing Requirements

Divide the routing problem in two parts:

- Routing within a single autonomous system
- Routing between autonomous systems

Two-level route propagation hierarchy

- Inter-domain routing protocol (Internet-wide standard)
- Intra-domain routing protocol (each AS selects its own)

Principle: Information hiding

Inter-AS Routing History: EGP

Exterior Gateway Protocol (EGP) (RFC 904, 1984)

Forced tree-like topology

- Single backbone
- AS's connected only as parents and children (not peers)

Did not allow for the topology to become general

No aggregation

Border Gateway Protocol (BGP)

Assumes the Internet is an arbitrarily interconnected set of ASs.

Today, the Internet consists of an interconnection of multiple backbone networks

Usually called *service provider* networks

Operated by private companies, not governments

Sites are connected to each other in arbitrary ways

Current version BGP-4 (RFC 4271)

Published 2006, some updates

Inter-AS Routing Options

Distance Vector Routing

Example: RIP

Problems:

- Distance (?)
- Loops
- Slow convergence (bad news travels slowly)
- Scalable?

Advantages:

- Hides total topology
- Nodes only know the "next hop"

Link State Routing

Example: OSPF

Problems:

- Link costs
 - What's cost? Distance? Business relationships?
- Shortest path (?)
 - Every node must agree on link cost algorithm
- Flooding
- High bandwidth and storage overhead
- Nodes must tell a lot about themselves
- Each node computes the whole network graph to make a spanning tree

Path Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Faster convergence (avoid count-to-infinity)
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

Flexible Policies

- Each node can apply local policies
 - Path selection: Which path to use?
 - Path export: Whether to advertise the path?
- Examples
 - Node 2 may prefer the path "2, 3, 1" over "2, 1"
 - Node 1 may not let node 3 hear the path "1, 2"

Path Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Faster convergence (avoid count-to-infinity)
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

Flexible Policies

- Each node can apply local policies
 - Path selection: Which path to use?
 - Path export: Whether to advertise the path?
- Examples
 - Node 2 may prefer the path "2, 3, 1" over "2, 1"
 - Node 1 may not let node 3 hear the path "1, 2"

Path Vectors in BGP

Each AS has:

1+ BGP *speaker* that gives *path* information and advertises:

- local networks
- other reachable networks (transit AS only)

1+ border "gateways" which need not be the same as the speakers

 Border gateways are routers through which packets enter and leave the AS

Distributing BGP Data

Long lived TCP Sessions between BGP Speakers (port 179)

- Exchange all active routes
- Exchange incremental updates (ALIVE messages, UPDATE)
 - Announce new routes (add IDs to new or existing paths)
 - Withdraw routes

Distributing BGP Data

Internal BGP (iBGP): Sessions between routers in a single AS

Ex. 1c talks to 1b to coordinate

External BGP (eBGP): Sessions between routers in different AS

Ex. 1c talks to 3a

BGP Path Selection

- Simplest case: Shortest AS path
 - Example: 1129 to 88 on previous slides
 - Break ties by flipping a coin
- Hot potato routing: Leave via closest internal router
 - iBGP at work!

Policy Based Path Selection

A Paper on Attacking BGP

Birge-Lee, H., Wang, L., Rexford, J., & Mittal, P. (2019). SICO: Surgical interception attacks by manipulating BGP communities. *Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS '19)*, 431–448. Association for Computing Machinery. https://doi.org/10.1145/3319535.3363197