Recitation 3c Distributed Systems Semester 1 5785

SE 424: Distributed Systems Recitation 3c
Semester 1 5785 18 Nov 2024
Lecturer: Michael J. May Kinneret College

Kafka

In this recitation, we’ll do some rudimentary experiments with Kafka, a message oriented middleware system
in use across the world.

Key web sites You can find out more about Kafka at the project’s website: https://kafka.apache.org
and its documentation site: https://kafka.apache.org/documentation/ .

The recitation that we’re going to go through today is based on the Quickstart tutorial on the Kafka project’s
web page (https://kafka.apache.org/quickstart). You can look at the website as a reference if you need
to.

Stream
Processor

Stream
Processor

Figure 1: Kafka General Architecture

The general architecture of Kafka is shown in Figure 1. We will write a couple of apps in recitation today
that work with Kafka and use it for sending messages based on topics.

1 Downloading Kafka

We'll start by downloading the Kafka 3.3.1 package. It can be downloaded from:
https://downloads.apache.org/kafka/3.6.1/kafka_2.13-3.6.1.tgz

To save time, I'll also put a copy of it on the shared H: drive.

(© Michael J. May 1



Recitation 3c Distributed Systems Semester 1 5785

You will need to use Linux for this recitation because Kafka 3 does not work on Windows 10 well (if at all)
due to differences in how memory mapped files are handled in Windows and Linux. Ideally, use a Linux
computer or a virtual machine with Linux installed. You can use Windows Subsystem for Linux (WSL2) if
you want, but the installation is non-trivial.

Once you have the code downloaded, unpack it into a directory which is convenient. I'll put it in /home/
mjmay/kafka which is what I'll be using for the rest of this document.

There are two important directories under the main directory:
e kafka/bin which has the binaries you’ll need to run Kafka under Linux (.sh scripts)
e kafka/config which has the configuration files you’ll need.

2 Starting ZooKeeper

Apache ZooKeeper (https://zookeeper.apache.org/) is the server which coordinates between Kafka bro-
kers (servers) and clients. A general figure of how ZooKeeper works is shown in Figure 2. ZooKeeper lets
you manage clusters of servers and coordinates between them. It takes care of leader election and fault
detection, two topics that we’ll get to later in the semester.

You can read more about Zookeeper at:

https://zookeeper.apache.org/doc/r3.9.1/index.html

Client Client Client Client Client Client Client Client

Figure 2: ZooKeeper General Architecture

We'll start up ZooKeeper using the commands shown below:
> bin/zookeeper-server-start.sh config/zookeeper.properties

If the command succeeds, you'll have a working ZooKeeper instance running which will let you connect
Kafka brokers.

2.1 Kafka without ZooKeeper

Kafka has been reliant on ZooKeeper since its inception over 10 years ago. ZooKeeper provides coordination
between Kafka brokers (servers), covering many of the basics of consensus and distributed communication.
Newer versions of Kafka include the Raft distributed consensus protocol (KRaft) that will eventually enable
Kafka to operate without ZooKeeper’s help. The implementation of the new protocol is ongoing and only
recently was declared to be production ready. We’ll use the classic ZooKeeper syntax for this recitation.

(© Michael J. May 2



Recitation 3c Distributed Systems Semester 1 5785

2.2 A note about JDK versus JRE

When you try to run the above command, you might get an error warning which looks like:

Missing server JVM at ‘C:\Program Files\Java\jre8\bin\server\jvm.d11l’.
Please install or use the JRE or JDK that contains these missing components.

The issue is that the Java Runtime Environment (JRE) which you usually run doesn’t come with the Java
server executables. They’re usually distributed only with the Java Development Kit (JDK). You can solve
the problem by installing a full JDK or openJDK that includes the Java server environment. Check out
https://www.oracle.com/java/technologies/downloads/ to find one that’s appropriate or use the built
in Linux package manager (e.g. , APT) to install it.

3 Running a Kafka Broker

The next step we’ll take is to start a Kafka Broker. The broker (or server) will be connected to the ZooKeeper
instance. Right now the connection is rather trivial since we have only one broker. When we add more than
one broker, ZooKeeper’s job will start to get more interesting.

Run the following command in a new command line window in Linux. (Don’t close the previous one with
the ZooKeeper inside).

> bin/kafka-server-start.sh config/server.properties

As before, the command must be run from the /home/mjmay/kafka directory. The console will start to spit
out some log lines to indicate that the server is working.

3.1 Broker Configuration

Let’s take a quick look at the broker’s configuration file to find some important fields that control how the
broker works. The line numbers and values below refer to the config/server.properties file as distributed
with the standard Kafka distribution.

e Line 24: broker.id=0

— This line gives the unique ID for each broker. If you have multiple brokers, you’ll need to ensure
that each one gets a unique ID.

e Line 34: listeners:PLAINTEXT://:9092

— This value is what the broker listens on. Right now it’s set for localhost on port 9092. If you're
going to do just localhost experiments, that’s fine. If you want to have multiple brokers in a
cluster, you’ll need to set up the IP addresses and ports for all of them.

e Line 38: advertised.listeners=PLAINTEXT://your.host.name:9092

— This field is what the broker will tell the ZooKeeper its IP address and port are. The difference
between this one and the previous one is that this one is what outsiders think the broker’s IP and
port are and the previous one is what the broker listens on at the local machine.

— The two values will be different if the broker is sitting behind a NAT router and you use port
forwarding. In that case, the external and internal IP addresses will be different.

e Line 62: log.dirs=/tmp/katka-logs

— Where the broker dumps its logs. Kafka is very verbose and within 5 minutes you can end up
with 1GB of logs. If you're running multiple brokers on a single computer for some reason, you
must ensure that each broker gets its own log directory. Otherwise, bad things will happen.

(© Michael J. May 3



Recitation 3c Distributed Systems Semester 1 5785

e Lines 105, 112, 116: log.retention.hours, log.segment.bytes, log.retention.check.interval.ms

— You'll find that Kafka is very verbose, dumping out GB of logs within minutes if you don’t stop
it. You can use these fields and others to control how much time the log is stored for and how
big each segment is.

— Keep in mind that if you make the log too small, you’ll lose some of Kafka’s abilities to recover
from server crashes and to provide a “from the beginning” replay of conversations.

e Line 125: zookeeper.connect=localhost:2181

— This points the broker to the ZooKeeper instances it can use. ZooKeeper itself is fault tolerant,
so you can have a cluster of ZooKeepers and let the broker choose from one of them.

— If you use the KRaft option in Kafka, you will not need to connect a ZooKeeper instance.

4 Create a Test Topic

Once we have the server (broker) and ZooKeeper ready, we can start a topic. The topics we create are the
“channels” over which the applications can communicate. Each message that a sender sends is put under a
topic and will be routed to all of the consumers who are interested in it. Run the following command from
a new command line in Linux (don’t close the Kafka broker or ZooKeeper windows).

> bin/kafka-topics.sh --create --replication-factor 1 --partitions 1 --topic test
--bootstrap-server localhost:9092

The topic is created with the following parameters:
e The Kafka broker instance that will be in charge managing the leader for the topic (localhost:9092)

e How many replicas to keep. Since the value is 1, that means that only one broker will manage it. If
that broker fails without warning, we may lose data.

e The number of partitions (1). Partitions refer to the number of pieces that of the log that will be
stored. They allow you to have logs that are too large for any one server to hold. We’ll use 1 for now
since we’re not going to be making huge logs.

Once the command above is run, we’ll see a success message. If you don’t get a success message, check that
the ZooKeeper and Kafka servers are still running in the background.

4.1 Checking the topic

You can check that your topic creation worked by running the following command (in Linux). You can run
it in the same command prompt that you used for the topic creation command.

> bin/kafka-topics.sh --list --bootstrap-server localhost:9092
You'll see a message showing that the test topic is defined.

You can also get more information about the topic using the topic describe command from the command
line:

> bin/kafka-topics.sh --describe --topic test --bootstrap-server localhost:9092
You'll see an output that looks like the following:

Topic: test TopicId: Y1FxY731RRW4SKkZ5i9eTQ PartitionCount: 1 ReplicationFactor: 1 Configs:
Topic: test Partition: O Leader: O Replicas: O Isr: O

The parameters you see here give more information about the topic:

(© Michael J. May 4



Recitation 3c Distributed Systems Semester 1 5785

e The name of the topic (test) and its unique ID (YIFxY73IRRW4SKkZ5i9eTQ)

e The number of partitions the topic has (1). Kafka can use multiple partitions to divide up a topic’s
events across multiple brokers.

e The replication factor (1). That refers to the number of copies of each partition. Since there is only 1
here, there is no backup in case of failure.

e The leader, which broker is in charge of partition 0. In this case it’s broker with ID 0 (the only one
we have). Since it’s the leader, all reads and writes go through it.

e The number of in sync replicas (Isr). Since there’s only one replica here, it’s listed alone.

5 Build a Consumer

Let’s set up a consumer now that will communicate with the Kafka broker and receive messages from the
topic “test”. Run the following command in Linux (open a new command prompt window):

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
The fields that we’re providing are as follows:

e The bootstrap server - the Kafka broker that we’re connecting to

e The topic to read from (test).

e Where to being reading from - here it’s from the beginning. We also can provide other options from
where to begin reading from.

Right now we won’t see anything, but when we start a producer we’ll start to see output appear in the
consumer’s window.

6 Build a Producer

Now that we have a consumer, let’s open a producer which will send data on it. Run the following command
in Linux (in a new command prompt window):

> bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic test

If the command works, we’ll be able to start entering in some messages and see them appear after a short
time in the consumer’s window.

You can try to dump a lot of text into the producer using input redirection. There should be a file called
LICENSE in the Kafka directory. Writing something like:

> bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic test < LICENSE

will dump the whole text contents of the file into the producer. They should appear shortly thereafter at
the consumer.

6.1 Adding a new Consumer

Let’s see what happens when we open a new consumer to the existing system. Run the command for creating
a new Consumer in a new CMD window. What output do you see on the screen?

Close the new consumer using Ctrl+C. Then start it again using the following command (note that I removed
the last flag from the previous version):

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test

(© Michael J. May 5



Recitation 3c Distributed Systems Semester 1 5785

Producer
Topic: test

Topic: test
Replication: 1
Leader: O

Kafka Broker

broker.id=0

Port:909

Consumer Consumer ZooKeeper
Topic: test Topic: test Port 2181

Figure 3: Single Broker Cluster
What happens?

7 Summary So Far

So far we have built a simple Kafka and ZooKeeper setup with one Kafka broker and one ZooKeeper
coordinating. The architecture is as shown in Figure 3.

There are two consumers that get data from the topic called “test” via the single Kafka broker. Note that
the broker is labeled with its broker.id=0 value from its configuration file (server.properties).

8 Building a Multibroker Cluster

We built a single broker cluster so far. Let’s make our setup more interesting by adding a few more brokers
on different computers and letting ZooKeeper arrange the communication between them.

First thing to do is to shut down the existing cluster so that we can mess around with the configuration files
without a problem. Close the command prompt windows for all of the applications. You can use Ctrl+C to
cause the brokers and ZooKeeper to shut down.

Now, let’s assume that you've got three computers available with IP addresses 10.0.0.1, 10.0.0.2, and 10.0.0.3
respectively. If your IP addresses are different or you're using VirtualBox to make a closed NAT network,
change the addresses accordingly. We’re going to build a topology which looks like Figure 4.

We're assuming that the original Kafka broker and ZooKeeper instance that you started were on 10.0.0.2. If
they were on a different IP address, change the addresses below accordingly.

(© Michael J. May 6



Recitation 3c

Distributed Systems

Semester 1 5785

(© Michael J. May

Producer
Topic: repiTopic

Kafka Broker
broker.id=2
IP:10.0.0.2:9092

Consumer
Topic: repliTopic|

Consumer
Topic: repliTopic|

Kafka Broker
broker.id=1
1P:10.0.0.1:9092

1P:10.0.0.2:2181

Kafka Broker
broker.id=3
1P:10.0.0.3:9092

Figure 4: Multi-Broker Cluster

Topic: repliTopic
Replication: 3
Leader: 1

Topic: test
Replication: 1
Leader: 0




Recitation 3c Distributed Systems Semester 1 5785

8.1 Configuration Files

We'll first three different server.properties files for the nodes. Make three copies of the configuration files
and change them as follows:

8.1.1 Broker at 10.0.0.1 server.properties file
e broker.id=1 (Line 24)

e zookeeper.connect=10.0.0.2:2181 (Line 125)

8.1.2 Broker at 10.0.0.2 server.properties file
e broker.id=2 (Line 24)
e zookeeper.connect=10.0.0.2:2181 (Line 125)

8.1.3 Broker at 10.0.0.3 server.properties file
e broker.id=3 (Line 24)
e zookeeper.connect=10.0.0.2:2181 (Line 125)

8.2 Running multiple brokers on a single computer

In case you don’t have access to multiple computers, it’s possible to create a fake “cluster” on a single
computer. To do that, you need to change the following elements:

1. Give the files three different file names

2. Make the brokers all have different IDs (as above)

3. Make the brokers all listen on different ports (say 9092, 9093, 9094).
4

. Give separate log directories for each broker (say /tmp/kafka-logsl, /tmp/kafka-logs2, /tmp/kafka-
logs3)

8.3 Starting Up the Cluster

Start up the ZooKeeper instance with the same configuration information as before on 10.0.0.2 only. Don’t
start any other ZooKeeper instances.

Start up the three brokers using the configuration files you defined above. Ensure they are all up and running
correctly.

Once you have the cluster up, set up the test topic as above (Sections 4, 5, 6) and test that it works.

8.4 Setting up a Replicated Topic
We next will set up a topic with replication factor 3. In Linux enter the following command:

> bin/kafka-topics.sh --create --bootstrap-server 10.0.0.2:9092 --replication-factor 3
--partitions 1 --topic repliTopic

Remember to chance 10.0.0.2 to the actual address of a broker. If you are doing everything on one computer,
use localhost.

Once you have the topic set up, you can test that it works using the following command:

> bin/kafka-topics.sh --describe --bootstrap-server 10.0.0.2:9092

(© Michael J. May 8



Recitation 3c Distributed Systems Semester 1 5785

You should get an output that looks like:

Topic:repliTopic PartitionCount:1 ReplicationFactor:3 Configs: Topic: repliTopic
Partition: O Leader: 1 Replicas: 1,2,3 Isr: 1,2,3

The fields above are as follows:

leader The node responsible for all reads and writes for the given partition. Each node will be the leader
for a randomly selected portion of the partitions.

replicas the list of nodes that replicate the log for this partition regardless of whether they are the leader
or currently alive

isr the set of “in-sync” replicas. This is the subset of the replicas list that is currently alive and caught-up
to the leader.

In this case since we have three replicas of the topic, one (1) is the leader and the others are all caught up.
If we try to check on our original topic (test), we would get output showing that there is only one replica
held by the leader.

8.5 Testing the Replication Resilience

Follow the commands in Sections 5 and 6 to set up two consumers and producers for repliTopic. Once
they are set up, have the producers send a few messages and ensure that the data arrive correctly at the
consumers.

Next, find the leader for repliTopic (using the kafka-topics.bat command above), and shut it down. You can
do that by pressing Ctrl4+C on the window for the leader.

After you shut down the topic, run the describe command on repliTopic again (using kafka-topics.bat) and
see who the new leader is. Use the producers to send more messages and check that they still arrive at the
consumers.

9 Use Kafka Connectors to Send Files

Use the connectors to send text files line by line. Use the connector consumer to see the file arrive correctly
and the regular one to see it as JSON. Follow the instructions in Section 6 at: https://kafka.apache.org/
quickstart.

10 Kafka Streams

Follow the quickstart example at the link below to get experience with Kafka streaming processing.

e https://kafka.apache.org/33/documentation/streams/quickstart

(© Michael J. May 9



Recitation 3c Distributed Systems Semester 1 5785

11 Implementing with Kafka

If you finished the above tasks, it’s time to write a small Java program that uses Kafka as a communication
backend. You’ll need to use the following classes from the Kafka client API:

1. Producer: Used by a program to send data using Kafka
2. Consumer: Used by a program to receive data using Kafka

You can install the classes from the API using Maven at the following id: org.apache.kafka:kafka-clients:3.6.1
using Intellij. If you use Maven POM files, add the code to your POM using the following XML:

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>3.6.1</version>

</dependency>

11.1 Producer

Create a class that uses a Producer to send the contents of a text file using a topic called “filesender.” You
can get the file name to send from the command line as a parameter. Send the file using the ProducerRecord
class. You can give null keys if you wish.

Send the file line by line (using readline).

11.2 Consumer

Create a class that uses a Consumer to receive the file from the topic filesender. Print the contents of the
file out to the command line.

(© Michael J. May 10



