
Recitation 2 Distributed Systems Semester 1 5785

SE424: Distributed Systems Recitation 2
Semester 1 5785 11 Nov 2024
Lecturer: Michael J. May Kinneret College

Multi-Tiered Architectures

1 Three Tiered Example

This recitation creates a simple example of a three tiered division of labor. A student information system
contains two servers with different information. The first server contains student test registration information
- who the students are and which courses for which they have taken tests. The second server contains just
booklet numbers, information about whether the booklet was graded, and a grade for the booklet (if there
is one).

The schemas for the databases are:

1. Server 1 (Booklets) contains the following database tables:

� Students (tz:integer, sname:varchar(20), address:varchar(50))

� Courses (cid:varchar(20), cname:varchar(80), year:integer, semester:integer)

� Testbooklets (tz:integer, cid:varchar(20), bookno:integer)

2. Server 2 (Grades) contains the following database table:

� Grades (bookno:integer, grade:integer, checked:integer)

1.1 Components and Deployment

The parts of the system and their deployment are shown in Figure 1.

Figure 1: Deployment Diagram for Grades Three Tier Server and Client

1.2 Database Connections and Queries

There are two options you can choose from for the database engine for this recitation.

1. If you have a local installation of MS SQL or MySQL on your computer, you can use it as the database
engine. In that case, make two separate databases, one called GradesDB and one called BookletsDB.

© Michael J. May 1



Recitation 2 Distributed Systems Semester 1 5785

2. You can use the SQLite database engine. In that case, you’ll need to use two database files, one called
gradesdb and one called bookletsdb. You can create your own database files or use the grades.db and
booklets.db provided on Moodle.

Depending on which of the database engines you’ll choose, you need to connect to the database using a
database connection string. The database connection strings for the two databases are different and will be
given in class. As a rule, database connection strings to local and remote database engines contain some sort
of authentication. Database connections to SQLite databases do not need authentication. The basic steps
for connecting to a database using a connection string, sending a query, and retrieving data via a cursor are
sketched in Figure 2.

The code we will develop will create an application which will show students information about all of their
test booklets, including grades (if there are any). The user inputs a student’s id number (tz) and receives
a listing of all of the student’s test booklets along with an indication for each whether it was graded. If it
was, the grade is displayed.

1.3 Using SQLite

You will need to import the Sqlite JDBC driver from Maven to use SQLite (org.xerial:sqlite-jdbc:jar:3.47.0.0).
You can read more about the project at Maven Central’s web page about the driver (https://mvnrepository.
com/artifact/org.xerial/sqlite-jdbc/3.47.0.0). Once you have the driver included in the dependen-
cies, you’ll need to create an instance of it using the following line of code in the server:

Class.forName("org.sqlite.JDBC");

Once you have the JDBC driver available, you can use it for queries. To help get you started, the following
are two useful queries for this task (note the use of ? for parameters). For MS SQL, the syntax is a bit
different.

In Server 1:

SELECT S.tz as TZ, S.sname as ’Student Name’, C.cname as ’Course Name’, C.year

as Year, C.semester as Semester, T.bookno as ’Booklet Number’

FROM TestBooklets T, Students S, Courses C

WHERE S.tz = T.tz AND C.cid = T.cid

AND T.tz = ?

ORDER BY bookno;

In Server 2:

SELECT bookno as ’Booklet Number’, checked as Checked?, grade as Grade

FROM Grades

WHERE bookno = ?;

1.4 Useful Classes

The following classes will be useful for you when you want to connect to the database:

� java.sql.Connection (https://docs.oracle.com/en/java/javase/19/docs/api/java.sql/java/sql/
Connection.html)

� java.sql.DriverManager (https://docs.oracle.com/en/java/javase/19/docs/api/java.sql/java/
sql/DriverManager.html)

� java.sql.PreparedStatement (https://docs.oracle.com/en/java/javase/19/docs/api/java.sql/java/
sql/PreparedStatement.html)

© Michael J. May 2



Recitation 2 Distributed Systems Semester 1 5785

Figure 2: General steps for connecting to and using a database connection

© Michael J. May 3



Recitation 2 Distributed Systems Semester 1 5785

� java.sql.ResultSet (https://docs.oracle.com/en/java/javase/19/docs/api/java.sql/java/sql/
ResultSet.html)

You can read about them on the JavaDoc webpages at the URLs above.

1.5 What to do: Processing Server

We’ll begin with the processing server part of the work. The server needs to have the following functionality:

� Let the user select which IP address to listen on (or to listen on all IP addresses).

� It must receive the configuration information (port, database connection strings) for its operation from
a non-hard coded place (parameters or external file).

� It must be able to handle multiple client sessions at a time (multithreading).

� It must let the user start and stop listening without quitting (interrupting threads).

The server will follow the following interaction protocol:

1. The client connects

2. The client provides a TZ to receive grades for

3. The server responds with a string array representation of the data (it performs the two queries on the
databases and joins them)

4. The client can repeat steps 2-3 above as needed.

5. The client disconnects

The server is read only - there is no way to update data on the databases.

The server’s output should be as shown in Figure 3.

1.6 What to do: Client

To make things go a bit quicker, I will give you ready code for the client. The client receives the IP address
and port of the server from a configuration file and then lets the user connect to the server. It has the
following functionality:

� Let the user connect or disconnect from the server without needing to restart the program

� Send a TZ to the server and show its results.

� Print the output from the server on the screen.

The client’s output should be as shown in Figure 4.

2 Next Steps

If you finish the application as given, add the following functionality:

1. Enable searching by ID number or student name. This requires including an option at the client
program to enter the student name or ID.

2. Retrieve a list of student IDs from the server automatically and use them to populate a list of potential
student IDs to query.

© Michael J. May 4



Recitation 2 Distributed Systems Semester 1 5785

Figure 3: Sample Server Output Trace

Figure 4: Sample Client Output Trace

© Michael J. May 5



Recitation 2 Distributed Systems Semester 1 5785

3 Appendix: Students table contents

To help with testing, here are the student IDs of the students in the sample database I gave you.

tz sname address

100143028 Madison Los Angeles
235129602 Anthony Los Angeles
246574437 Michael Chicago
260249572 Isabella Phoenix
339495799 Sophia Houston
446994639 Jacob New York
523105229 Ava New York
546140696 Abigail Los Angeles
581901327 Mia Phoenix
624656748 Daniel New York
626986137 Noah New York
697897081 Jayden Los Angeles
710884273 Chloe Houston
752855348 Alexander Houston
832855660 William Philadelphia
841448578 Olivia Philadelphia
885557442 Emily Philadelphia
938393052 Ethan Los Angeles
959133623 Joshua New York

© Michael J. May 6


