
22 Dec 2024 SE 424: Distributed Systems 1

Zookeeper Mutex, Distributed Databases,

22 December 2024

Lecture 8

Slide Credits: Maarten van Steen

Many images copyright © Lena Wiese,

Advanced Data Management: For SQL, NoSQL, Cloud and Distributed Databases.

Topics for Today

• Mutual Exclusion

– Using Zookeeper

• Elections

• Distributed Databases

22 Dec 2024 SE 424: Distributed Systems 2

Using ZooKeeper basics

Centralized server setup

All client-server
communication is
nonblocking

• A client immediately gets a
response

Maintains a tree-based
namespace

• Like a filesystem

• Example: /lock

Clients can

• create

• delete

• update nodes

• check existence

22 Dec 2024 SE 424: Distributed Systems 3

ZooKeeper Race Conditions
• ZooKeeper allows a client to be notified when a node or a branch in the tree

changes

• May easily lead to race conditions.

• Solution: Use Version Numbers

22 Dec 2024 SE 424: Distributed Systems 4

𝐶1 𝐶2
Create node /lock

Create node /lock

/lock already exists

Delete node /lock

Notify me of changes to /lock

Goes

to

sleep

ZooKeeper Versioning

22 Dec 2024 SE 424: Distributed Systems 5

𝐶1

𝐶2

Write a to node

n, assuming v1

OK, n at v2

Read n

a v2

Write b to

node n,

assuming v2

Ok, n at v3

Write c to

node n,

assuming v2

Failed

ZooKeeper Locking

22 Dec 2024 SE 424: Distributed Systems 6

𝐶1 𝐶2
Create node /lock

Create node /lock

/lock already exists

Delete node /lock
Notify me of changes to /lock

zzzzz

/lock is gone

ZooKeeper Locking

22 Dec 2024 SE 424: Distributed Systems 7

𝐶1 𝐶2
Create node /lock

Create node /lock

/lock already exists
Delete node /lock

Notify me of changes to /lock

Wrong version

So Far

• Mutual Exclusion

– Using Zookeeper

• Elections

• Distributed Databases

22 Dec 2024 SE 424: Distributed Systems 8

22 Dec 2024 SE 424: Distributed Systems 9

Election Algorithms

Principle: An algorithm requires some process acts as a coordinator. How to

select the special process dynamically.

Note: In many systems the coordinator is chosen by hand (e.g. file servers). This

leads to centralized solutions → single point of failure.

Question: If a coordinator is chosen dynamically, is it centralized? Distributed?

Question: Is a fully distributed solution, i.e. one without a coordinator, always

more robust than any centralized or coordinated solution?

22 Dec 2024 SE 424: Distributed Systems 10

Election by Bullying (1/2)

Principle: Each process has an associated priority (weight). Process with the

highest priority must be elected as coordinator.

Issue: How to find the heaviest process?

1. Any process can just start an election by sending an election message to all

other processes (assuming you don’t know the weights of the others).

2. If a process 𝑃ℎ𝑒𝑎𝑣𝑦 receives an election message from a lighter process 𝑃𝑙𝑖𝑔ℎ𝑡, it

sends a take-over message to 𝑃𝑙𝑖𝑔ℎ𝑡. 𝑃𝑙𝑖𝑔ℎ𝑡 is out of the race.

3. If a process doesn’t get a take-over message back, it wins, and sends a victory

message to all other processes.

22 Dec 2024 SE 424: Distributed Systems 11

Election by Bullying (2/2)

Question: We’re assuming something very important here – what?

If you have broadcast – just broadcast to everyone.

22 Dec 2024 SE 424: Distributed Systems 12

Election in a Ring

Principle: Process priority is obtained by organizing processes into a (logical) ring.

Process with the highest priority should be elected as coordinator.

• Any process can start an election by sending an election message to its successor.

If successor is down, the message is passed on to the next successor.

• If a message is passed on, the sender adds itself to the list. When it gets back to

the initiator, everyone had a chance to make its presence known.

• The initiator sends a coordinator message around the ring containing a list of all

living processes. The one with the highest priority is elected as coordinator.

Question: Does it matter if two processes initiate an election?

Question: What happens if a process crashes during the election?

22 Dec 2024 SE 424: Distributed Systems 13

Election in a Ring

1

2

3

4

5

6

0

7

Previous

coordinator has

crashed

No response from 7

[5]

Notices no

coordinator

Notices no coordinator

[2]

[2,3]

[5,6]

[2,3,4]

[2,3,4,

5]

[2,3,4,

5,6]

[2,3,4,

5,6,0]

[2,3,4,

5,6,0,1]

[5,6,0]

[5,6,0,

1]

[5,6,0,

1,2]

[5,6,0,

1,2,3]

[5,6,0,

1,2,3,4]

Leader election in ZooKeeper server group

• Each server 𝑠 in the server group has an identifier 𝑖𝑑(𝑠)

• Each server has a monotonically increasing counter 𝑡𝑥(𝑠) of the latest transaction it

handled (i.e., series of operations on the namespace).

• When follower 𝑠 suspects leader crashed, it broadcasts an ELECTION message,

along with the pair (𝑣𝑜𝑡𝑒𝐼𝐷, 𝑣𝑜𝑡𝑒𝑇𝑋). Initially,

– 𝑣𝑜𝑡𝑒𝐼𝐷 ← 𝑖𝑑(𝑠)

– 𝑣𝑜𝑡𝑒𝑇𝑋 ← 𝑡𝑥(𝑠)

• Each server s maintains two variables:

– 𝑙𝑒𝑎𝑑𝑒𝑟(𝑠): records the server that s believes may be final leader. Initially, 𝑙𝑒𝑎𝑑𝑒𝑟(𝑠) ← 𝑖𝑑(𝑠).

– 𝑙𝑎𝑠𝑡𝑇𝑋(𝑠): what s knows to be the most recent transaction. Initially, 𝑙𝑎𝑠𝑡𝑇𝑋(𝑠) ← 𝑡𝑥(𝑠).

22 Dec 2024 SE 424: Distributed Systems 14

Leader election in ZooKeeper server group

• When s∗ receives ⟨𝑣𝑜𝑡𝑒𝐼𝐷, 𝑣𝑜𝑡𝑒𝑇𝑋⟩

• If 𝑙𝑎𝑠𝑡𝑇𝑋(𝑠∗) < 𝑣𝑜𝑡𝑒𝑇𝑋, then 𝑠∗ just received more up-to-date information on the

most recent transaction, and sets

– 𝑙𝑒𝑎𝑑𝑒𝑟(𝑠∗) ← 𝑣𝑜𝑡𝑒𝐼𝐷

– 𝑙𝑎𝑠𝑡𝑇𝑋(𝑠∗) ← 𝑣𝑜𝑡𝑒𝑇𝑋

• If 𝑙𝑎𝑠𝑡𝑇𝑋(𝑠∗) = 𝑣𝑜𝑡𝑒𝑇𝑋 and 𝑙𝑒𝑎𝑑𝑒𝑟(𝑠∗) < 𝑣𝑜𝑡𝑒𝐼𝐷, then 𝑠∗ knows as much about

the most recent transaction as what it was just sent, but its perspective on which

server will be the next leader needs to be updated:

– 𝑙𝑒𝑎𝑑𝑒𝑟(𝑠∗) ← 𝑣𝑜𝑡𝑒𝐼𝐷

Note

• When 𝑠∗ believes it should be the leader, it broadcasts ⟨𝑖𝑑(𝑠∗), 𝑡𝑥(𝑠∗)⟩.

• Essentially, we’re bullying.

22 Dec 2024 SE 424: Distributed Systems 15

So Far

• Mutual Exclusion

– Using Zookeeper

• Elections

• Distributed Databases

22 Dec 2024 SE 424: Distributed Systems 16

Distributed Databases Intro

A distributed database system consists of loosely coupled sites that share no

physical components

– DBs that run at each site are independent of each other

– Transactions may access data at one or more sites

Why?

22 Dec 2024 SE 424: Distributed Systems 17

Vertical Scaling

• Scaling up

• Add more memory, disk,
CPUs

Reach the limit

• Can’t get bigger

• Bottleneck

Horizontal Scaling

• Stretch it across many
servers

Distribution Advantages

Load balancing

• Divide the traffic and
burden

Flexible Scaling

• Add or remove servers
as needed

Heterogenous
Nodes

• Combine powerful and
cheap servers

Symmetric
Configuration

• Nodes can replace each
other

• Failure recovery

Decentralized
Control

• P2P algorithms for
failure tolerance

• No single point of failure

22 Dec 2024 SE 424: Distributed Systems 18

Distributed Database Transparency

Access

• Uniform query and
management
interfaces

Location

• User can query
without specifying
where to run it

Replication

• Can query anywhere
in a replicated system
and get same answer

• Nodes update each
other

Fragmentation

• Data may be split up

• Queries are routed to
the correct nodes as
needed

Migration

• If data moves, user is
unaware

Concurrency

• Many users may work
at once

• Resolve conflicts

Failure

• Work even in
presence of failures

• Recover from missed
messages

22 Dec 2024 SE 424: Distributed Systems 19

22 Dec 2024 SE 424: Distributed Systems 20

Distributed Data Storage

Assume relational data model. Major goals of distribution:

• Replication

– System maintains multiple copies of data (stored in different sites) for fast retrieval and fault

tolerance.

• Fragmentation

– Relation is partitioned into several fragments stored at different sites

• Replication + Fragmentation

– Relation is partitioned into several fragments: system maintains several identical replicas of

each such fragment.

Data Replication

Relation or fragment is replicated when it is stored at two or more sites.

• Full replication → the relation is stored at all sites.

• Fully redundant DBs → every site has a copy of the entire database.

22 Dec 2024 SE 424: Distributed Systems 21

Advantages:

• Availability: failure of site with 𝑟 doesn’t cause
unavailability

• Parallelism: queries on 𝑟 may be processed
by several nodes in parallel.

• Reduced data transfer: 𝑟 is available at each
site with a replica

Disadvantages:

• Increased cost of updates: each replica of 𝑟
must be updated.

• Increased complexity of concurrency control:
concurrent updates to distinct replicas may
lead to inconsistent data unless special
concurrency control mechanisms are
implemented.

• One solution: choose one copy as primary
copy and apply concurrency control
operations on primary copy

Fragmentation and Transparent Access

SELECT ENAME,SAL

FROM EMP,ASG,PAY

WHERE DUR > 12

AND EMP.ENO = ASG.ENO

AND PAY.TITLE = EMP.TITLE

Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects
 with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo

SE 424: Distributed Systems 2222 Dec 2024

Distributed Database - User View

Distributed Database

SE 424: Distributed Systems 2322 Dec 2024

Distributed DBMS - Reality

Communication
Subsystem

DBMS
Software

User
ApplicationUser

Query

DBMS
Software

DBMS
Software

DBMS
Software

User
Query

DBMS
Software

User
Query

User
Application

SE 424: Distributed Systems 2422 Dec 2024

22 Dec 2024 SE 424: Distributed Systems 25

Data Fragmentation

Division of 𝑟 into fragments 𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛 which contain sufficient information to

reconstruct it.

Horizontal fragmentation: each tuple of 𝑟 is assigned to one or more fragments

Vertical fragmentation: the schema (columns) for 𝑟 is split into several smaller

schemas

– All schemas must contain a common candidate key (or superkey) to ensure lossless join

(reconstruction).

– A special attribute (a rowId or artificial key) may be added to the schema

Example: relation account with schema:

• Account = (branch_name, account_number, balance)

22 Dec 2024 SE 424: Distributed Systems 26

Example: Horizontal Fragmentation

𝑎𝑐𝑐𝑜𝑢𝑛𝑡1 = 𝜎𝑏𝑟𝑎𝑛𝑐ℎ_𝑛𝑎𝑚𝑒="𝐻𝑖𝑙𝑙𝑠𝑖𝑑𝑒"(𝐴𝑐𝑐𝑜𝑢𝑛𝑡)

Table Account(branch_name, account_number, balance)

𝑎𝑐𝑐𝑜𝑢𝑛𝑡2 = 𝜎𝑏𝑟𝑎𝑛𝑐ℎ_𝑛𝑎𝑚𝑒="𝑉𝑎𝑙𝑙𝑒𝑦𝑣𝑖𝑒𝑤"(𝐴𝑐𝑐𝑜𝑢𝑛𝑡)

branch_name account_number balance

Hillside A-305 500

Hillside A-226 336

Hillside A-155 62

branch_name account_number balance

Valleyview A-177 205

Valleyview A-402 1000

Valleyview A-408 1123

Valleyview A-639 750

22 Dec 2024 SE 424: Distributed Systems 27

Example: Vertical Fragmentation

𝑑𝑒𝑝𝑜𝑠𝑖𝑡2 = Π𝑡𝑢𝑝𝑙𝑒_𝑖𝑑,𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑛𝑢𝑚𝑏𝑒𝑟,𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑛𝑓𝑜)

𝑑𝑒𝑝𝑜𝑠𝑖𝑡1 = Π𝑏𝑟𝑎𝑛𝑐ℎ_𝑛𝑎𝑚𝑒,𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑛𝑎𝑚𝑒,𝑡𝑢𝑝𝑙𝑒_𝑖𝑑(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑛𝑓𝑜)

Table Customer_Info(tuple_id, account_number, branch_name, customer_name, balance)

tuple_id account_number balance

1 A-305 500

2 A-226 336

3 A-177 205

4 A-402 10000

5 A-155 62

6 A-408 1123

7 A-639 750

branch_name customer_name tuple_id

Hillside Lowman 1

Hillside Camp 2

Valleyview Camp 3

Valleyview Kahn 4

Hillside Kahn 5

Valleyview Kahn 6

Valleyview Green 7

Fragmentation Advantages

Horizontal

• Parallel processing on fragments of

a relation

• Can split a relation so that tuples

are located where they are most

frequently accessed

Vertical

• Columns can be split so that each

part of the tuple is stored where it is

most frequently accessed

– tuple-id attribute allows efficient joining

of vertical fragments

• Parallel processing on a relation by

column splits

22 Dec 2024 SE 424: Distributed Systems 28

Can mix the two (vertical and horizontal)

Fragments may be re-fragmented to an arbitrary depth

Fragmentation Costs

Horizontal

• Division into equal parts

• Hot spots – data in particular

demand

• Maintenance over time with data

creation and deletion

Vertical

• Joins across columns are costly

• Need to calculate affinity – which

columns are more likely to be

requested together

• Need to contact many servers to do

complete query

– SELECT * FROM Sailors

22 Dec 2024 SE 424: Distributed Systems 29

Sharding – NoSQL Databases

No tables, just
record IDs

Divide up
responsibility for
records among

servers

No joins, so simpler

Consider which
records are

commonly retrieved
with which

22 Dec 2024 SE 424: Distributed Systems 30

Sharding Graph Databases

22 Dec 2024 SE 424: Distributed Systems 31

https://singhnaveen.medium.com/what-are-graph-databases-and-different-types-of-graph-databases-369e5040a9d0

How to shard?

Minimum cut

Affinity

Sharding Graph Databases: Options

Manual

• Place nodes near
where they are used

Random

• Place nodes randomly

Hash based

• Assign range of nodes
based on hash values

Workload driven

• Reduce cuts traversed
in each transaction

• Keep track of usage
and history

22 Dec 2024 SE 424: Distributed Systems 32

https://singhnaveen.medium.com/what-are-graph-databases-and-different-types-of-graph-databases-369e5040a9d0

Issues:

• How to find nodes at the end of a

connection?

• Quickly query nodes in a string?

Naming Data Items - Criteria

Uniqueness

Every data item
must have a
system-wide
unique name.

Search

• Must be able to
find the
location of data
items
efficiently.

Migrate

• Must be able to
change the
location of data
items
transparently.

Autonomy

• Each site
should be able
to create new
data items
autonomously.

22 Dec 2024 SE 424: Distributed Systems 33

• I have 100 tables, 500 columns, 1,000,000 data rows

• How do I identify them?

Solution 1: Centralized (Name Server)

Unique

Search

Migrate

Autonomy

Structure:

• Name Server assigns all names

• Each site maintains a record of local data items

• Sites ask Name Server to locate non-local data
items

Advantages:

• Satisfies criteria Unique, Search, Migrate

Disadvantages:

• Does not satisfy criterion Autonomy

• Name Server is a potential performance bottleneck

• Name Server is a single point of failure

22 Dec 2024 SE 424: Distributed Systems 34

Solution 2: Aliases and Local
Structure:

• Each site prefixes its own site identifier to any name that it
generates (i.e., site17.account)
– ✓Gives a unique identifier

– ✓Avoids problems with central control.

–  Does not give network transparency.

Solution: Create local aliases for data items; Store the
mapping of aliases to the real names at each site.

Results:

• User can be unaware of the physical location of a data item

• User is unaffected if the data item is moved from one site to
another.

22 Dec 2024 SE 424: Distributed Systems 35

Unique

Search

Migrate

Autonomy

Conclusion

• Mutual Exclusion

– Using Zookeeper

• Elections

• Distributed Databases

22 Dec 2024 SE 424: Distributed Systems 36

	Default Section
	Slide 1: Zookeeper Mutex, Distributed Databases, 22 December 2024 Lecture 8
	Slide 2: Topics for Today

	Zookeeper
	Slide 3: Using ZooKeeper basics
	Slide 4: ZooKeeper Race Conditions
	Slide 5: ZooKeeper Versioning
	Slide 6: ZooKeeper Locking
	Slide 7: ZooKeeper Locking

	Elections
	Slide 8: So Far
	Slide 9: Election Algorithms
	Slide 10: Election by Bullying (1/2)
	Slide 11: Election by Bullying (2/2)
	Slide 12: Election in a Ring
	Slide 13: Election in a Ring
	Slide 14: Leader election in ZooKeeper server group
	Slide 15: Leader election in ZooKeeper server group

	Distributed Databases
	Slide 16: So Far
	Slide 17: Distributed Databases Intro
	Slide 18: Distribution Advantages
	Slide 19: Distributed Database Transparency
	Slide 20: Distributed Data Storage
	Slide 21: Data Replication
	Slide 22: Fragmentation and Transparent Access
	Slide 23: Distributed Database - User View
	Slide 24: Distributed DBMS - Reality
	Slide 25: Data Fragmentation
	Slide 26: Example: Horizontal Fragmentation
	Slide 27: Example: Vertical Fragmentation
	Slide 28: Fragmentation Advantages
	Slide 29: Fragmentation Costs
	Slide 30: Sharding – NoSQL Databases
	Slide 31: Sharding Graph Databases
	Slide 32: Sharding Graph Databases: Options
	Slide 33: Naming Data Items - Criteria
	Slide 34: Solution 1: Centralized (Name Server)
	Slide 35: Solution 2: Aliases and Local
	Slide 36: Conclusion

