Communication: Layering,
RPC, Sockets, MOM

10 November 2024
Lecture 2

Slide Credits: Maarten van Steen

10 Nov 2024 ISE 424: Distributed Systems

Topics for Today

Communication
- Layered Communication
- Types of Communication

RPC and RMI
Sockets
Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems

Basic Networking Model

T

Application - e] >
R — l <--- Presentation protocol ____. -
Session P — Session protocol _______. -
Transger : - Transport protocol |______, %
Network | < _______N_Qt_W?EK protocol________. >
S——— | - Data link protocol ________ .
Physical «-------Physical protocol _______. >
Network

10 Nov 2024 ISE 424: Distributed Systems

Layered Protocols

— Data link layer header

— Network layer header

— Transport layer header

— Session layer header
Presentation layer header
r Application layer header

Message

T

g

Bits that actually appear on the network

Data link
layer trailer

10 Nov 2024 ISE 424: Distributed Systems

Adding Middleware

Application
Middleware
Transport
Network

Data link

Physical

Network

10 Nov 2024

ISE 424: Distributed Systems

Middleware Layer

* Observation: Middleware is invented to provide common services and
protocols that can be used by many different applications:

- Arrich set of communication protocols, but which allow different
applications to communicate

- (Un)marshaling of data, necessary for integrated systems

- Naming protocols, so that different applications can easily share
resources

- Security protocols, to allow different applications to communicate in a
secure way

- Scaling mechanisms, such as support for replication and caching
* Note: what remains are truly application-specific protocols

* Question: Such as...?

10 Nov 2024 ISE 424: Distributed Systems 6

So Far

Communication
- Layered Communication
- Types of Communication

RPC and RMI
Sockets
Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems

Types of Communication (1/3)

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ /
Request \ /

Transmission
interrupt
V Storage /V

facility

Server Time —>

 Distinguish:
- Transient versus persistent communication
- Asynchronous versus synchronous communication

10 Nov 2024 ISE 424: Distributed Systems

Types of Communication (2/3)

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ I/
Request \ /

Transmission
interrupt
v/ Storage /V

facility

Server Time —>

* Transient communication: A message is discarded by a
communication server as soon as it cannot be delivered at the next
server, or at the receiver.

Persistent communication: A message is stored at a communication
server as long as it takes to deliver it at the receiver.

10 Nov 2024 ISE 424: Distributed Systems

Types of Communication (3/3)

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ /
Request \ /

Transmission
interrupt
V Storage /V

facility

Server Time —>

» Places for synchronization:
- At request submission
- At request delivery
- After request processing

10 Nov 2024 ISE 424: Distributed Systems 10

Client/Server

« Some observations: Client/Server computing is generally
based on a model of transient synchronous

communication:

Client and server
must be active at
the time of
communication

Client issues
request and blocks
until it receives

reply

Server essentially
waits only for
Incoming requests,
and subsequently
processes them

- Drawbacks of synchronous communication:

Client cannot do
any other work
while waiting for

reply

Failures must be
dealt with
immediately (the
client is waiting)

In many cases the
model is simply
not appropriate

(mail, news)

| Image source: https://www.zazzle.com/funny+server+accessories |

10 Nov 2024

ISE 424: Distributed Systems

11

Messaging

» Message-oriented middleware: Aims at high-level
persistent asynchronous communication:

Processes send
each other
messages, which
are queued

Sender need not
wait for immediate
reply, but can do
other things

Middleware often
ensures fault
tolerance

| Image source: http://tattoo-journal.com/40-lovely-mom-tattoo-designs/ |

10 Nov 2024

ISE 424: Distributed Systems

12

So Far

Communication
- Layered Communication
- Types of Communication

RPC and RMI
Sockets
Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems

13

Conventional Procedure Call

Parameter passing in a local
procedure call:

(a) the stack before the call to
read.

(b) The stack while the called

procedure is active. Main program's
local variables

(@)

Stack pointer

Main program's
local variables

nbytes

buf

fd

return address

read's local
variables

(b)

10 Nov 2024 ISE 424: Distributed Systems

14

Remote Procedure Call (RPC)

4)

Basic RPC
operation

o /

4)

Parameter
passing

- J

4)
Variations
_ /

/

Java
Remote

Method
Invocation

_ (RMI)

~

J

10 Nov 2024

ISE 424: Dis

tributed Systems

15

Basic RPC Operation (1/3)

Observations:

« Application developers are familiar with simple procedure
model

« Well-engineered procedures operate in isolation (black
box)

* There is no fundamental reason not to execute
procedures on separate machine

Conclusion: communication between caller & callee can be
hidden by using procedure-call mechanism.

Wait for result

Return
from call

Client

7

Call remote
procedure

Request

Call local procedure Time —>»
and return results

10 Nov 2024 ISE 424: Distributed Systems 16

Basic RPC Operation (2/3)

Client machine Server machine
Client process SeIer Proeess
1. Client call to ,
procedure Implementation 6. Stub makes
of add local call to "add"
Server stub
L k=addl) — Client stub N [Lk=addl)
. " // \ . "
proc: "add proc: "add
int.__val() 5 Stub builds int__val) 2 UINPECKS
int__val(j) message int.__val(j) e
A
. proc: "add" 4. Server OS
Client OS int_val(i) Server OS hands message
_ int:_val(j)) to server stub

3. Message is sent
across the network

10 Nov 2024 ISE 424: Distributed Systems 17

Basic RPC Operation (3/3)

1. Client procedure calls client stubas 6. Server does work and returns

usual. result to the stub.
2. Client stub builds message and /. Server stub packs it in message
calls local OS. and calls OS.
3. Client’s OS sends message to 8. Server's OS sends message to
remote OS. client’s OS.
4. Remote OS gives message to 9. Client’s OS gives message to
server stub. client stub.
5. Server stub unpacks parameters 10. Client stub unpacks result and
and calls server. returns to the client.
Client machine Server machine
srenprecess 1-Glienteall Io S?r;vel;i::::)n 6. Stub makes
ragBadie i of add ' local call to "add"
<=2l | Client s?jbwer =
e 2. Stub builds) ALl
int: val(j) message int: ‘val(j) message
Client OS i'?'ll;c:)C: "va:l?i; Server OS * r?aer:\éjesrn?esssage
_ int._val(j) P, to server stub

3. Message is sent
across the network

10 Nov 2024 ISE 424: Distributed Systems 18

RPC: Parameter Passing (1/2)

Parameter marshaling: There’s more than just wrapping
parameters into a message:

lient an rver :
C ent and serve Wrapping a parameter
machines may have :
different data means transforming a
representations (think of value mtoba %zquence of
byte ordering) y
Client and server must Client and server need
agree on the encoding: to properly interpret
« How are basic data values messag_es tranSermmg
represented (integers, floats, them into machine-
characters) dependent
» How are complex data values -
represented (arrays, unions) representations.

10 Nov 2024 ISE 424: Distributed Systems

RPC: Parameter Passing (2/2)

RPC parameter passing:

 RPC assumes copy in/copy out semantics: while
procedure is executed, nothing can be assumed about
parameter values (only Ada supports this model).

« RPC assumes all data that is to be operated on is passed
by parameters. Excludes passing references to (global)
data.

Conclusion: full access transparency cannot be realized.

Observation: If we introduce a remote reference mechanism,

access transparency can be enhanced:
- Remote reference offers unified access to remote data
- Remote references can be passed as parameter in RPCs

10 Nov 2024 ISE 424: Distributed Systems 20

Asynchronous RPCs

Essence: Try to get rid of the strict request-reply behavior,
but let the client continue without waiting for an answer
from the server.

Client Wait for result Client ~ Wait for acceptance

7 N 7 N
Call remote Return Call remote Return
procedure from call procedure from call

Request Accept request

Request

Server Call local procedure Time —» Server Call local procedure Time —»
and return results

(a) (b)

Variation: deferred synchronous RPC:

Wait for Interrupt cllent
) acceptance
Client ————————
/
Call remote Feturn " et
rocedure rom ca eturn
g results Acknowledge
Accept
Request request
Seer sssEssssraae ———— S
Call local procedure Time —»
CaII client with
one-way RPC

10 Nov 2024 ISE 424: Distributed Systems 21

RPC in Practice

Essence: Let the developer concentrate on only the client-
and server-specific code; let the RPC system (generators

and libraries) do the rest.

Interface

definition file

IDL compiler

Client code Client stub Header Server stub Server code
i #include #include
(C compiler] (C compiler] C compiler
Client Client stub Server stub Server
object file object file object file object file

\ 4

Client
binary

Cv:ﬁ. Runtime
Linker library

Runtime tvj
library Linker

\ 4

Server
binary

10 Nov 2024

ISE 424: Distributed Systems

Client-to-Server Binding (DCE)

Issues: (1) Client must locate server machine, and (2) locate
the server.

Example: DCE uses a separate daemon for each server
machine.

3. Lo

Client machine

Directory machine

Client

v

Directory
server
A
5. Do RPC

Server machine

@ter service

—

4. Ask for end point

Server

> pee &

/[R

daemon

1. Register end point

D

™\ End point

table

10 Nov 2024

ISE 424: Distributed Systems

23

Remote Method Invocation Basics

Assume client stub and server skeleton are in place

Client

RemoteOb] obj =1
int result = obj.

ookup (10.10.10.10:2020)
remoteMethod (varl, wvar2);

7 1

RemoteObj Stub

TCP packet: result

2| | TCP Packet: obj, varl, var2

3

Server

RemoteObj Skeleton

result

call |4

obj

int remoteMethod (typel, type2)

10 Nov 2024

ISE 424: Distributed Systems

24

Remote Method Invocation Basics

1. Client invokes method at stub
2. Stub marshals request and sends it to server

3. Server ensures referenced object is active:
1. Create separate process to hold object
2. Load the object into server process

4. Requestis unmarshaled by object’s skeleton, and referenced
method is invoked

5. If request contained an object reference, invocation is applied
recursively (i.e., server acts as client)

6. Resultis marshaled and passed back to client

/. Client stub unmarshals reply and passes result to client application

10 Nov 2024 ISE 424: Distributed Systems 25

RMI Parameter Passing

Object-by-value: A client may also pass a complete object
as parameter value:

* An object has to be marshaled:
- Marshall its state

- Marshall its methods, or give a reference to where an
implementation can be found

« Server unmarshals object. Note that we have now created
a copy of the original object.

* QObject-by-value passing tends to introduce nasty
problems

10 Nov 2024 ISE 424: Distributed Systems 26

RMI Parameter Passing

Machine A

Local object
Local O1

reference L1]

J

Client code with

RMI to server at C
(proxy)

Machine B

Remote
reference R1

e — —_—

Ii
-
F

Remote object
02

|

New local

{ Copy of Of] /

reference\ ,
Remote ~ \4 ‘,/’/ \
:11:3%%“;? Va\:‘lsth > @ ";\ Copy of R1 to O2
parameters S achie G Server code

(method implementation)

Note: System-wide object references generally contain server address and
port to which adapters listens, and local object ID.

Extra: May also contain information on protocol between client and servers
(TCP, UDP, SOAP, JSON, etc.)

10 Nov 2024

ISE 424: Distributed Systems

27

Others: CORBA

* https://corba.org

. Object
[Client Implementation
iDL | DL
Stub Skelgton
| gy

Object Request broker

Fi?ure 1: A request passing from
client to object implementation
Copyright 2000 Object Management Group

« Multi-language support (COBOL, Ada, Lisp, Java, Python,

etc.)

» Legacy technology, but still works

10 Nov 2024

ISE 424: Distributed Systems

28

https://corba.org/

Others: Windows Communication Foundation

WCF Arc

hitecture

* https://docs.microsoft.
com/en-

e us/dotnet/framework/w
cont ‘ bl [oG Cf
R | | ey | - Microsoft based
technology
- Web Services based
s || Ve || » Support for .NET
AT el Fiow " ([amedee] s, languages and
ctivation and hosting Windows, should work
G || oe || e || one on Linux

10 Nov 2024 ISE 424: Distributed Systems 29

Others: gRPC

gRPC Server Ruby Client

Prog
o]
HeQUeSI
C++ Service
Aro

t
© ReSDOnse(s)

Android-Java Client

e https://grpc.io/
« Language independent (multi-platform)
« Uses binary underlying protocol (ProtoBuf from Google)

10 Nov 2024 ISE 424: Distributed Systems

30

https://grpc.io/

So Far

Communication
- Layered Communication
- Types of Communication

RPC and RMI
Sockets
Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems

31

Message-Oriented Communication

Transient Message-
Messaging Queuing System
« Sockets * Message
Brokers

* |[BM MQ
(formerly
WebSphere
MQ)

* Others

10 Nov 2024

ISE 424: Distributed Systems

32

Transient Messaging: Sockets

Example: Consider the Berkeley socket interface, which has
been adopted by all Posix systems, as well as Windows
95/NT/2000/XP/Vista:

Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

Server
| socket ¥ bind ¥ listen |- accAept > read |

\
! \

/ . . \
/ Communication \

! \

Synchronization point —

/ A |
[socket | prconnect» write —»| read close |
Client &

10 Nov 2024 ISE 424: Distributed Systems 33

Message-Oriented Middleware

Essence: Asynchronous persistent communication through
support of middleware-level queues. Queues correspond
to buffers at communication servers.

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block
Notify Install a handler to be called when a message is put into the specified queue

See also: Java Queue Interface (JDK 18)

10 Nov 2024 ISE 424: Distributed Systems 34

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/Queue.html

Message Broker

Observation: Message queuing systems assume a common messaging
protocol: all applications agree on message format (i.e., structure and
data representation)

Message broker (Integration Bus): Centralized component that takes
care of application heterogeneity in an MQ system:
- Transforms incoming messages to target format
- Very often acts as an application gateway
- May provide subject-based routing capabilities = Enterprise Application

Integration
Repository with
conversion rules
Source client Message broker and programs Destination client
! \ / /
\ \ [[
Broker
program il
/f A ;
H = & F‘ jH Queuing F‘
= s 1 O —| = layer P
(OF] (O ﬁ 0S
_— N D)

Network

10 Nov 2024 ISE 424: Distributed Systems 35

I B M M Q (1 / 3) (https://www.youtube.com/watch?v=ynjc5GMQeRA)

Basic concepts: Message transfer:

- Application-specific * Messages are transferred between queues
messages are put « Message transfer between queues at different
into, and removed processes, requires a channel

from queues At each endpoint of channel is a message

* Queues always channel agent
reside under the

) Message channel agents are responsible for:
regime of a queue

- Setting up channels using lower-level network

manager communication facilities (e.g., TCP/IP)
* Processes can put - (Un)wrapping messages from/in transport-level
messages only in packets

local queues, or
through an RPC
mechanism

- Sending/receiving packets

10 Nov 2024 ISE 424: Distributed Systems 36

IBM MQ (2/3)

Client's receive

Sending client Routing table Send queue queue Recei/ving client
\ 7
Queue Queue
Program manager manager Program

MQ Interface ﬂ_ m

E == =] — =

Server Server
Stub <tun | MCA/MCA MCA|MCA | 5S¢ Y

A N A 1
S N F S | T W S

gl;r?chronous) Logal oetyark { Enterprise network
S~ -~ _—Toother remote
Message passing queue managers
(asynchronous)

« Channels are inherently unidirectional

« MQ provides mechanisms to automatically start MCAs
when messages arrive, or to have a receiver set up a
channel

* Any network of queue managers can be created; routes
are set up manually (system administration)

10 Nov 2024 ISE 424: Distributed Systems

37

IBM MQ (3/3)

Routing: By using logical names, in combination with name
resolution to local queues, it is possible to put a message

In @ remote queue

Alias table Routing table
LA1 [QMC ave [sa1 Alias table Routing table
LA2 |QMD QMC | SQf LA1 [QMA] |QMA | SQf
QmD | SQ2 LA2 | QMD QMC | SQ1
QMD | SQ1
SQZE_‘ |_EJ sQf
QMA H S5
=] =0 QMB
Routing table gqq _[[1}— QMC Routing table
QMA | SQ1
QMA | SQ1
uclsz] sae I
' QMD | SQ1
Alias table
LA1 | QMA 1] sQ1i
Azl avc] | L
QMD

Question: What’s a major problem here?

10 Nov 2024 ISE 424: Distributed Systems

Others: Microsoft

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/integration-event-based-microservice-communications
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/subscribe-events

Implementing asynchronous event-driven
communication with an event bus

| Backend I
| { Basket microservice x\I |
|
| ‘l Database as |
----------------------- S] m__.’ C Cl"lc\ I I
| Cata[ug microservice % | Servic e
[__________________________
I : o (APl Ser I" o I E PriceUpdated event - Existing basket items I
| UpdatePrice B4 l Event bus o |
| "command PriceUpdated event | lk (Publish/Subscribe channel)
: (Publish action) | E PriceUpdated event = Other related features I
| | o DB update il Event bus abstractions/interface I
|
[
I : Database I Event bus implementations
I %o - Azure
T T e e = Rabbith Service message [I
I Bus event broker
| Eventual consistency between microservices based on event-driven async communication

10 Nov 2024 ISE 424: Distributed Systems 39

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/integration-event-based-microservice-communications

Others: Azure

https://azure.microsoft.com/en-us/services/event-hubs/ |

& Microsoft Azure

Overview Solutions Products~ Documentation Pricing Training Marketplace ~ Partners~ Support~ Blog More v

Explore Event Hubs: Pricing details Documentation

Event Hubs is a fully managed, real-time data ingestion service that's simple, trusted, and scalable.

Stream millions of events per second from any source to build dynamic data pipelines and immediately

respond to business challenges. Keep processing data during emergencies using the geo-disaster C——
recovery and geo-replication features. =

Integrate seamlessly with other Azure services to unlock valuable insights. Allow existing Apache Kafka

Q
clients and applications to talk to Event Hubs without any code changes—you get a managed Kafka P YL ¥
experience without having to manage your own clusters. Experience real-time data ingestion and ®

. . eCe®
microbatching on the same stream. 00®
eCe

Link to video >

My account

Portal

Fre

10 Nov 2024 ISE 424: Distributed Systems

40

Other: Apache Camel

| https://camel.apache.org/ |

APACHE
q Camel Blog Projects~ Documentation v Community v Download About ~

Camel is an open source integration framework that empowers you to quickly and easily
integrate various systems consuming or producing data.

PACKED WITH FUNCTIONALITY

10 Nov 2024 ISE 424: Distributed Systems 41

Others: Amazon EBus (Event Bus

https://docs.aws.amazon.com/lumberyard/latest/userguide/ebus-intro.html

Lumberyard
User Guide (Version 1.21)

|D0cumentatior| - This Guide

Search

What is Lumberyard?

Set Up

Create a Game Project

O Build a Game Project
Migrate a Game Project
Lumberyard Editor

Sample Projects and Levels
Asset Pipeline

Component Entities

Add Features and Assets with Gems

AWS Documentation » Amazon Lumberyard » User Guide » Working with the Event Bus (EBus) System

Working with the Event Bus (EBus) System

Event buses (EBuses) are a general-purpose communication system that Lumberyard uses to dispatch notifications and receive
requests. EBuses are configurable and support many different use cases.

To interact with the engine or other components in Lumberyard, include the component or system's EBus or API header in your
code. Then make calls to the exposed EBuses. With this approach you can replace engine-level system APIs with implementations
that you define in a gem. For example, you could replace Lumberyard's audio system with your own EBus handler. This would give
you complete control over audio without having to recompile the engine.

For examples of EBus usage, see Usage and Examples.
For in-depth information about EBuses, including conceptual diagrams, see Event Buses in Depth.

For C++ API reference documentation on the core EBus code, see the EBus API Reference in the Amazon Lumberyard C++ API
Reference.

How Components Use EBuses

10 Nov 2024

ISE 424: Distributed Systems 42

Others: Amazon SQS

https://aws.amazon.com/sqgs/ |

Amazon SQS Overview Features Pricing Getting Started Resources FAQs

Amazon Simple Queue Service

Fully managed message queues for microservices, distributed

systems, and serverless applications

Get started for free

Amazon Simple Queue Service (SQS) is a fully managed message queuing service that enables you to decouple

and scale microservices, distributed systems, and serverless applications. SQS eliminates the complexity and

overhead associated with managing and operating message oriented middleware, and empowers developers to Q % % Q S

focus on differentiating work. Using SQS, you can send, store, and receive messages between software
components at any volume, without losing messages or requiring other services to be available. Get started
with SQS in minutes using the AWS console, Command Line Interface or SDK of your choice, and three simple

commands.

SQS offers two types of message queues. Standard queues offer maximum throughput, best-effort ordering,
and at-least-once delivery. SQS FIFO queues are designed to guarantee that messages are processed exactly

once, in the exact order that they are sent.

WHAT'S NEW:
SQS FIFO Queues are now
available in 21 regions

10 Nov 2024 ISE 424: Distributed Systems

43

Conclusion

Communication
- Layered Communication
- Types of Communication

RPC and RMI
Sockets
Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems

44

	Slide 1: Communication: Layering, RPC, Sockets, MOM 10 November 2024 Lecture 2
	Slide 2: Topics for Today
	Slide 3: Basic Networking Model
	Slide 4: Layered Protocols
	Slide 5: Adding Middleware
	Slide 6: Middleware Layer
	Slide 7: So Far
	Slide 8: Types of Communication (1/3)
	Slide 9: Types of Communication (2/3)
	Slide 10: Types of Communication (3/3)
	Slide 11: Client/Server
	Slide 12: Messaging
	Slide 13: So Far
	Slide 14: Conventional Procedure Call
	Slide 15: Remote Procedure Call (RPC)
	Slide 16: Basic RPC Operation (1/3)
	Slide 17: Basic RPC Operation (2/3)
	Slide 18: Basic RPC Operation (3/3)
	Slide 19: RPC: Parameter Passing (1/2)
	Slide 20: RPC: Parameter Passing (2/2)
	Slide 21: Asynchronous RPCs
	Slide 22: RPC in Practice
	Slide 23: Client-to-Server Binding (DCE)
	Slide 24: Remote Method Invocation Basics
	Slide 25: Remote Method Invocation Basics
	Slide 26: RMI Parameter Passing
	Slide 27: RMI Parameter Passing
	Slide 28: Others: CORBA
	Slide 29: Others: Windows Communication Foundation
	Slide 30: Others: gRPC
	Slide 31: So Far
	Slide 32: Message-Oriented Communication
	Slide 33: Transient Messaging: Sockets
	Slide 34: Message-Oriented Middleware
	Slide 35: Message Broker
	Slide 36: IBM MQ (1/3) (https://www.youtube.com/watch?v=ynjc5GMQeRA)
	Slide 37: IBM MQ (2/3)
	Slide 38: IBM MQ (3/3)
	Slide 39: Others: Microsoft
	Slide 40: Others: Azure
	Slide 41: Other: Apache Camel
	Slide 42: Others: Amazon EBus (Event Bus)
	Slide 43: Others: Amazon SQS
	Slide 44: Conclusion

