
10 Nov 2024 ISE 424: Distributed Systems 1

Communication: Layering,

RPC, Sockets, MOM

10 November 2024

Lecture 2

Slide Credits: Maarten van Steen

Topics for Today

• Communication

– Layered Communication

– Types of Communication

• RPC and RMI

• Sockets

• Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems 2

Basic Networking Model

10 Nov 2024 ISE 424: Distributed Systems 3

10 Nov 2024 ISE 424: Distributed Systems 4

Layered Protocols

10 Nov 2024 ISE 424: Distributed Systems 5

Adding Middleware

10 Nov 2024 ISE 424: Distributed Systems 6

Middleware Layer
• Observation: Middleware is invented to provide common services and

protocols that can be used by many different applications:

– A rich set of communication protocols, but which allow different

applications to communicate

– (Un)marshaling of data, necessary for integrated systems

– Naming protocols, so that different applications can easily share

resources

– Security protocols, to allow different applications to communicate in a

secure way

– Scaling mechanisms, such as support for replication and caching

• Note: what remains are truly application-specific protocols

• Question: Such as...?

10 Nov 2024 ISE 424: Distributed Systems 7

So Far

• Communication

– Layered Communication

– Types of Communication

• RPC and RMI

• Sockets

• Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems 8

Types of Communication (1/3)

• Distinguish:

– Transient versus persistent communication

– Asynchronous versus synchronous communication

10 Nov 2024 ISE 424: Distributed Systems 9

Types of Communication (2/3)

• Transient communication: A message is discarded by a
communication server as soon as it cannot be delivered at the next
server, or at the receiver.

• Persistent communication: A message is stored at a communication
server as long as it takes to deliver it at the receiver.

10 Nov 2024 ISE 424: Distributed Systems 10

Types of Communication (3/3)

• Places for synchronization:

– At request submission

– At request delivery

– After request processing

10 Nov 2024 ISE 424: Distributed Systems 11

Client/Server

• Some observations: Client/Server computing is generally

based on a model of transient synchronous

communication:

• Drawbacks of synchronous communication:

Im
a
g
e
 s

o
u
rc

e
:

h
tt

p
s
:/

/w
w

w
.z

a
z
z
le

.c
o
m

/f
u
n
n
y
+

s
e
rv

e
r+

a
c
c
e
s
s
o
ri
e

s

Client and server
must be active at

the time of
communication

Client issues
request and blocks

until it receives
reply

Server essentially
waits only for

incoming requests,
and subsequently
processes them

Client cannot do
any other work

while waiting for
reply

Failures must be
dealt with

immediately (the
client is waiting)

In many cases the
model is simply
not appropriate

(mail, news)

10 Nov 2024 ISE 424: Distributed Systems 12

Messaging

• Message-oriented middleware: Aims at high-level

persistent asynchronous communication:

Im
a
g
e
 s

o
u
rc

e
:

h
tt

p
:/

/t
a
tt

o
o

-j
o

u
rn

a
l.
c
o
m

/4
0
-l
o

v
e
ly

-m
o
m

-t
a
tt

o
o
-d

e
s
ig

n
s
/

Processes send
each other

messages, which
are queued

Sender need not
wait for immediate
reply, but can do

other things

Middleware often
ensures fault

tolerance

10 Nov 2024 ISE 424: Distributed Systems 13

So Far

• Communication

– Layered Communication

– Types of Communication

• RPC and RMI

• Sockets

• Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems 14

Conventional Procedure Call
Parameter passing in a local

procedure call:

(a) the stack before the call to

read.

(b) The stack while the called

procedure is active.

10 Nov 2024 ISE 424: Distributed Systems 15

Remote Procedure Call (RPC)

Basic RPC
operation

Parameter
passing

Variations

Java
Remote
Method

Invocation
(RMI)

10 Nov 2024 ISE 424: Distributed Systems 16

Basic RPC Operation (1/3)

Observations:

• Application developers are familiar with simple procedure

model

• Well-engineered procedures operate in isolation (black

box)

• There is no fundamental reason not to execute

procedures on separate machine

Conclusion: communication between caller & callee can be

hidden by using procedure-call mechanism.

Basic RPC Operation (2/3)

10 Nov 2024 ISE 424: Distributed Systems 17

10 Nov 2024 ISE 424: Distributed Systems 18

Basic RPC Operation (3/3)
1. Client procedure calls client stub as

usual.

2. Client stub builds message and

calls local OS.

3. Client’s OS sends message to

remote OS.

4. Remote OS gives message to

server stub.

5. Server stub unpacks parameters

and calls server.

6. Server does work and returns

result to the stub.

7. Server stub packs it in message

and calls OS.

8. Server’s OS sends message to

client’s OS.

9. Client’s OS gives message to

client stub.

10. Client stub unpacks result and

returns to the client.

10 Nov 2024 ISE 424: Distributed Systems 19

RPC: Parameter Passing (1/2)

Parameter marshaling: There’s more than just wrapping

parameters into a message:

Client and server
machines may have

different data
representations (think of

byte ordering)

Wrapping a parameter
means transforming a

value into a sequence of
bytes

Client and server must
agree on the encoding:

• How are basic data values
represented (integers, floats,
characters)

• How are complex data values
represented (arrays, unions)

Client and server need
to properly interpret

messages, transforming
them into machine-

dependent
representations.

10 Nov 2024 ISE 424: Distributed Systems 20

RPC: Parameter Passing (2/2)

RPC parameter passing:

• RPC assumes copy in/copy out semantics: while
procedure is executed, nothing can be assumed about
parameter values (only Ada supports this model).

• RPC assumes all data that is to be operated on is passed
by parameters. Excludes passing references to (global)
data.

Conclusion: full access transparency cannot be realized.

Observation: If we introduce a remote reference mechanism,

access transparency can be enhanced:
– Remote reference offers unified access to remote data

– Remote references can be passed as parameter in RPCs

10 Nov 2024 ISE 424: Distributed Systems 21

Asynchronous RPCs

Essence: Try to get rid of the strict request-reply behavior,

but let the client continue without waiting for an answer

from the server.

Variation: deferred synchronous RPC:

10 Nov 2024 ISE 424: Distributed Systems 22

RPC in Practice

Essence: Let the developer concentrate on only the client-

and server-specific code; let the RPC system (generators

and libraries) do the rest.

10 Nov 2024 ISE 424: Distributed Systems 23

Client-to-Server Binding (DCE)

Issues: (1) Client must locate server machine, and (2) locate

the server.

Example: DCE uses a separate daemon for each server

machine.

Remote Method Invocation Basics

Assume client stub and server skeleton are in place

10 Nov 2024 ISE 424: Distributed Systems 24

RemoteObj obj = lookup(10.10.10.10:2020)

int result = obj.remoteMethod(var1, var2);

Client

RemoteObj Stub

Server

TCP Packet: obj, var1, var2

RemoteObj Skeleton

obj
int remoteMethod(type1, type2)

call

result

TCP packet: result

1

2

4

3

5

6

7

Remote Method Invocation Basics
1. Client invokes method at stub

2. Stub marshals request and sends it to server

3. Server ensures referenced object is active:
1. Create separate process to hold object

2. Load the object into server process

4. Request is unmarshaled by object’s skeleton, and referenced
method is invoked

5. If request contained an object reference, invocation is applied
recursively (i.e., server acts as client)

6. Result is marshaled and passed back to client

7. Client stub unmarshals reply and passes result to client application

10 Nov 2024 ISE 424: Distributed Systems 25

RMI Parameter Passing

Object-by-value: A client may also pass a complete object

as parameter value:

• An object has to be marshaled:

– Marshall its state

– Marshall its methods, or give a reference to where an

implementation can be found

• Server unmarshals object. Note that we have now created

a copy of the original object.

• Object-by-value passing tends to introduce nasty

problems

10 Nov 2024 ISE 424: Distributed Systems 26

RMI Parameter Passing

Note: System-wide object references generally contain server address and

port to which adapters listens, and local object ID.

Extra: May also contain information on protocol between client and servers

(TCP, UDP, SOAP, JSON, etc.)

10 Nov 2024 ISE 424: Distributed Systems 27

Others: CORBA

• https://corba.org

• Multi-language support (COBOL, Ada, Lisp, Java, Python,

etc.)

• Legacy technology, but still works

10 Nov 2024 ISE 424: Distributed Systems 28

https://corba.org/

Others: Windows Communication Foundation

• https://docs.microsoft.

com/en-

us/dotnet/framework/w

cf

• Microsoft based

technology

• Web Services based

• Support for .NET

languages and

Windows, should work

on Linux

10 Nov 2024 ISE 424: Distributed Systems 29

Others: gRPC

• https://grpc.io/

• Language independent (multi-platform)

• Uses binary underlying protocol (ProtoBuf from Google)

10 Nov 2024 ISE 424: Distributed Systems 30

https://grpc.io/

So Far

• Communication

– Layered Communication

– Types of Communication

• RPC and RMI

• Sockets

• Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems 31

Message-Oriented Communication

Transient
Messaging

• Sockets

Message-
Queuing System

• Message
Brokers

Examples

• IBM MQ
(formerly
WebSphere
MQ)

• Others

10 Nov 2024 ISE 424: Distributed Systems 32

10 Nov 2024 ISE 424: Distributed Systems 33

Transient Messaging: Sockets

Example: Consider the Berkeley socket interface, which has

been adopted by all Posix systems, as well as Windows

95/NT/2000/XP/Vista:

10 Nov 2024 ISE 424: Distributed Systems 34

Message-Oriented Middleware

Essence: Asynchronous persistent communication through

support of middleware-level queues. Queues correspond

to buffers at communication servers.

See also: Java Queue Interface (JDK 18)

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/Queue.html

10 Nov 2024 ISE 424: Distributed Systems 35

Message Broker
Observation: Message queuing systems assume a common messaging

protocol: all applications agree on message format (i.e., structure and

data representation)

Message broker (Integration Bus): Centralized component that takes

care of application heterogeneity in an MQ system:

– Transforms incoming messages to target format

– Very often acts as an application gateway

– May provide subject-based routing capabilities ⇒ Enterprise Application

Integration

IBM MQ (1/3) (https://www.youtube.com/watch?v=ynjc5GMQeRA)

Basic concepts:

• Application-specific

messages are put

into, and removed

from queues

• Queues always

reside under the

regime of a queue

manager

• Processes can put

messages only in

local queues, or

through an RPC

mechanism

Message transfer:

• Messages are transferred between queues

• Message transfer between queues at different

processes, requires a channel

• At each endpoint of channel is a message

channel agent

• Message channel agents are responsible for:

– Setting up channels using lower-level network

communication facilities (e.g., TCP/IP)

– (Un)wrapping messages from/in transport-level

packets

– Sending/receiving packets

10 Nov 2024 ISE 424: Distributed Systems 36

10 Nov 2024 ISE 424: Distributed Systems 37

IBM MQ (2/3)

• Channels are inherently unidirectional

• MQ provides mechanisms to automatically start MCAs

when messages arrive, or to have a receiver set up a

channel

• Any network of queue managers can be created; routes

are set up manually (system administration)

10 Nov 2024 ISE 424: Distributed Systems 38

IBM MQ (3/3)

Routing: By using logical names, in combination with name

resolution to local queues, it is possible to put a message

in a remote queue

Question: What’s a major problem here?

Others: Microsoft

10 Nov 2024 ISE 424: Distributed Systems 39

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/integration-event-based-microservice-communications

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/subscribe-events

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/integration-event-based-microservice-communications

Others: Azure

10 Nov 2024 ISE 424: Distributed Systems 40

https://azure.microsoft.com/en-us/services/event-hubs/

Other: Apache Camel

10 Nov 2024 ISE 424: Distributed Systems 41

https://camel.apache.org/

Others: Amazon EBus (Event Bus)

10 Nov 2024 ISE 424: Distributed Systems 42

https://docs.aws.amazon.com/lumberyard/latest/userguide/ebus-intro.html

Others: Amazon SQS

10 Nov 2024 ISE 424: Distributed Systems 43

https://aws.amazon.com/sqs/

Conclusion

• Communication

– Layered Communication

– Types of Communication

• RPC and RMI

• Sockets

• Message Oriented Communication

10 Nov 2024 ISE 424: Distributed Systems 44

	Slide 1: Communication: Layering, RPC, Sockets, MOM 10 November 2024 Lecture 2
	Slide 2: Topics for Today
	Slide 3: Basic Networking Model
	Slide 4: Layered Protocols
	Slide 5: Adding Middleware
	Slide 6: Middleware Layer
	Slide 7: So Far
	Slide 8: Types of Communication (1/3)
	Slide 9: Types of Communication (2/3)
	Slide 10: Types of Communication (3/3)
	Slide 11: Client/Server
	Slide 12: Messaging
	Slide 13: So Far
	Slide 14: Conventional Procedure Call
	Slide 15: Remote Procedure Call (RPC)
	Slide 16: Basic RPC Operation (1/3)
	Slide 17: Basic RPC Operation (2/3)
	Slide 18: Basic RPC Operation (3/3)
	Slide 19: RPC: Parameter Passing (1/2)
	Slide 20: RPC: Parameter Passing (2/2)
	Slide 21: Asynchronous RPCs
	Slide 22: RPC in Practice
	Slide 23: Client-to-Server Binding (DCE)
	Slide 24: Remote Method Invocation Basics
	Slide 25: Remote Method Invocation Basics
	Slide 26: RMI Parameter Passing
	Slide 27: RMI Parameter Passing
	Slide 28: Others: CORBA
	Slide 29: Others: Windows Communication Foundation
	Slide 30: Others: gRPC
	Slide 31: So Far
	Slide 32: Message-Oriented Communication
	Slide 33: Transient Messaging: Sockets
	Slide 34: Message-Oriented Middleware
	Slide 35: Message Broker
	Slide 36: IBM MQ (1/3) (https://www.youtube.com/watch?v=ynjc5GMQeRA)
	Slide 37: IBM MQ (2/3)
	Slide 38: IBM MQ (3/3)
	Slide 39: Others: Microsoft
	Slide 40: Others: Azure
	Slide 41: Other: Apache Camel
	Slide 42: Others: Amazon EBus (Event Bus)
	Slide 43: Others: Amazon SQS
	Slide 44: Conclusion

