
26 Jan 2025 SE 424: Distributed Systems 1

Fault Tolerance and

Resilience, Raft, Cyber 3

26 January 2025

Lecture 12

Slide Credits: Maarten van Steen

Topics for Today

• Failures and Resilience

• Raft and Consensus

• Cyber 3: Consensus and Failure

• Source: TvS 8

26 Jan 2025 SE 424: Distributed Systems 2

Dependability

• A component provides services to clients. To provide services, the component

may require the services from other components → a component may depend

on some other component.

• A component 𝐶 depends on 𝐶∗ if the correctness of 𝐶's behavior depends on

the correctness of 𝐶∗ 's behavior.

• Note: in the context of distributed systems, components are generally

processes or channels.

26 Jan 2025 SE 424: Distributed Systems 3

Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easily can a failed system be repaired

Reliability versus Availability

• Reliability 𝑅(𝑡): probability that a component has been up and running

continuously in the time interval [0, 𝑡):

• Traditional metrics:

26 Jan 2025 SE 424: Distributed Systems 4

Mean Time to Failure
(𝑀𝑇𝑇𝐹): Average time
until a component fails

Mean Time to Repair
(𝑀𝑇𝑇𝑅): Average time it
takes to repair a failed

component.

Mean Time Between Failures
(𝑀𝑇𝐵𝐹): 𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅

Reliability versus Availability

Availability 𝐴(𝑡): Average fraction of time that a component has been up and

running in the interval [0, 𝑡):

• (Long term) availability 𝐴: 𝐴(∞)

Note:

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅

Observation

Reliability and availability make sense only if we have an accurate notion of what

a failure is

26 Jan 2025 SE 424: Distributed Systems 5

Terminology

Term Description Example

Failure May occur when a component is

not living up to its specification

A crashed

program

Error Part of a component that may

lead to a failure

A programming

bug

Fault The cause of an error A sloppy

programmer

26 Jan 2025 SE 424: Distributed Systems 6

Handling Faults
Term Description Example

Fault Prevention Prevent the occurrence of

a fault

Don’t hire sloppy

programmers

Fault Tolerance Build a component such

that it can mask the

occurrence of a fault

Build each component by

two independent

programmers

Fault Removal Reduce the presence,

number, or seriousness

of a fault

Get rid of sloppy

programmers

Fault Forecasting Estimate current

presence, future

incidence, and

consequences of bugs

Estimate how a recruiter

is doing when it comes to

hiring sloppy

programmers

26 Jan 2025 SE 424: Distributed Systems 7

Handling Faults

26 Jan 2025 SE 424: Distributed Systems 8

Image: https://xkcd.com/1700/

Failure models

26 Jan 2025 SE 424: Distributed Systems 9

• Halt, but correct behavior until halting

Crash failures:

• Failure in sending or receiving messages

• Receiving omissions: Sent messages are not
received

• Send omissions: Messages are not sent that should
have

General omission failures:

• Correct output but provided outside a specified time
interval.

Timing failures:

Failure models

26 Jan 2025 SE 424: Distributed Systems 10

• Response is incorrect

• Value failures: Wong output values

• State transition failures: Deviation
from correct flow of control

Response failures:

• May produce arbitrary responses at
arbitrary times

Arbitrary failures:

Dependability versus Security

• Omission failure: A component fails to take an action that it should have taken

• Commission failure: A component takes an action that it should not have taken

Observations

Deliberate failures, be they omission or commission failures, stretch out to the

field of security

There is a thin line between dependability and security

26 Jan 2025 SE 424: Distributed Systems 11

Halting Failures

Scenario: 𝐶 no longer perceives any activity from 𝐶∗ → a

halting failure? Distinguishing between a crash or

omission/timing failure may be impossible:

26 Jan 2025 SE 424: Distributed Systems 12

Asynchronous
system

• No assumptions about
process execution speeds
or message delivery
times

• → cannot reliably detect
crash failures.

Synchronous system

• Process execution
speeds and message
delivery times are
bounded

• → we can reliably detect
omission and timing
failures.

Halting Failures

Scenario: 𝐶 no longer perceives any activity from 𝐶∗ → a

halting failure? Distinguishing between a crash or

omission/timing failure may be impossible:

26 Jan 2025 SE 424: Distributed Systems 13

Partially synchronous
systems

• Most of the time, we can assume
the system to be synchronous

• Yet there is no bound on the time
that a system is asynchronous

• → can normally reliably detect
crash failures

https://xkcd.com/2209/

26 Jan 2025 SE 424: Distributed Systems 14

Halting Failures Assumptions

26 Jan 2025 SE 424: Distributed Systems 15

Fail-stop: Crash
failures, but reliably

detectable

Fail-noisy: Crash
failures, eventually
reliably detectable

Fail-silent: Omission
or crash failures:
clients cannot tell
what went wrong.

Fail-safe: Arbitrary,
yet benign failures

(can't do any harm).

Fail-arbitrary:
Arbitrary, with

malicious failures

Ways to Mask Failure

Information redundancy

• Add extra bits to data units
so that errors can recovered
when bits are garbled.

Time redundancy

• Design a system so actions
can be performed again if
something is wrong.

• Used when faults are
transient or intermittent.

Physical redundancy

• Add equipment or processes
to allow failure of one or
more components

• Extensively used in
distributed systems.

26 Jan 2025 SE 424: Distributed Systems 16

So Far

• Failures and Resilience

• Raft and Consensus

• Cyber 3: Consensus and Failure

26 Jan 2025 SE 424: Distributed Systems 17

Process Resilience

Basic idea: protect yourself against faulty processes through process replication:

26 Jan 2025 SE 424: Distributed Systems 18

Groups and Failure Masking

𝑘-Fault-tolerant group

• When a group can mask any 𝑘
concurrent member failures

• 𝑘 is degree of fault tolerance

Group size

Halting failures:

• 𝑘 + 1 members: no member
will produce an incorrect
result, so one good member
suffices

Arbitrary failures

• 2𝑘 + 1 members: Correct
result can be obtained only
through a majority vote.

26 Jan 2025 SE 424: Distributed Systems 19

Groups and Failure Masking

• Important:

– All members are identical

– All members process commands in the same order

• Result:

– Only then do we know that all processes are programmed to do exactly the same thing

Observation

The processes need to have consensus on which command to execute next

26 Jan 2025 SE 424: Distributed Systems 20

Flood-based Consensus

System Model

• Process group 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}

• Fail-stop semantics

• Reliable failure detection

• Client contacts 𝑃𝑖 requesting it to

execute a command

• Every 𝑃𝑖 maintains a list of

proposed commands

Basic idea (Rounds)

• Round 𝑟, 𝑃𝑖 multicasts its known set

of commands 𝐶𝑖
𝑟 to all others

• At the end of 𝑟, each 𝑃𝑖 merges all

received commands into new 𝐶𝑖
𝑟+1

• Next command 𝑐𝑚𝑑𝑖 selected

through globally shared

deterministic function 𝑐𝑚𝑑𝑖 ←
𝑠𝑒𝑙𝑒𝑐𝑡(𝐶𝑖

𝑟+1)

26 Jan 2025 SE 424: Distributed Systems 21

Flood-based Consensus

26 Jan 2025 SE 424: Distributed Systems 22

𝑃1 crashes 𝑃2 received all proposed

commands ➔ Decides

• 𝑃3 may detect

𝑃1 crashed,

but does not

know if 𝑃2

received

anything

• 𝑃3 cannot

know if it has

same

information as

𝑃2 → cannot

make decision

Flood-based Consensus

26 Jan 2025 SE 424: Distributed Systems 23

𝑃1 crashes 𝑃2 received all proposed

commands ➔ Decides

• 𝑃3 and 𝑃4 can’t

decide yet –

they know 𝑃1

crashed

• 𝑃2 tells the

others what it

decided

• 𝑃3 and 𝑃4 then

follows 𝑃2’s

choice

Raft

• Developed for understandability

26 Jan 2025 SE 424: Distributed Systems 24

Image source and © https://raft.github.io/

Straightforward leader-
election algorithm

• Current leader operates
during the current term.

Log

• Every server (5) keeps a log
of operations, some of which
have been committed.

• Backup will not vote for a new
leader if its own log is more
up to date.

All committed operations
have the same position

in the log of every
server.

Leader decides which
pending operation is to
be committed next

• ⇒ a primary-backup
approach.

Leader election in Raft

Relatively small group of
servers

States

• Follower

• Candidate

• Leader

Each server starts in the
follower state.

Protocol works in terms,
starting with term 0

A leader regularly
broadcasts messages

• Updates or

• A simple heartbeat

26 Jan 2025 SE 424: Distributed Systems 25

Image source and © https://raft.github.io/

Selecting a new Leader

Follower A hasn’t
received anything from
leader L for some time

A broadcasts that it
volunteers to be the

next leader, increasing
the term by 1.

A enters the candidate
state.

26 Jan 2025 SE 424: Distributed Systems 26

Image source and © https://raft.github.io/

Selecting a new Leader 1

Leader L receives the
election message

Responds by
acknowledging that it is

still the leader.

A returns to the
follower state.

End

26 Jan 2025 SE 424: Distributed Systems 27

Image source and © https://raft.github.io/

Selecting a new Leader 2

Another follower
B gets the

election message
from A

B hasn’t heard
other candidates

in the current
round

B votes for A.

A collects a
majority of votes

A is leader of new
term

End

26 Jan 2025 SE 424: Distributed Systems 28

Image source and © https://raft.github.io/

Things could go wrong

Multiple Candidates, no Majority

• Two candidates started

– Both received 2 votes

• Election times out, try again

• Solution: Slightly differ the timeout

values per follower for deciding

when to start an election

• Avoids concurrent elections

Network Partition

• Network divided into parts

• Part with majority elects leader

• Part with minority doesn’t elect

leader

• Solution: Minority part doesn’t

commit anything

• When network heals, minority part

re-syncs

26 Jan 2025 SE 424: Distributed Systems 29

Image source and © https://raft.github.io/

Things could go wrong

Bad Candidate

• Candidate has less up to date log

than recipient

• Might lead to leader who is ignorant

• Solution: Node will not vote for

candidate who is less up to date

• Eventually most up to date node will

candidate

Animation Project

• http://thesecretlivesofdata.com/raft/

26 Jan 2025 SE 424: Distributed Systems 30

Image source and © https://raft.github.io/

Submitting an operation

Client
submits a
request for
operation o.

Leader
appends the

request
⟨𝑜, 𝑡 , 𝑘⟩ to its

own log

Current term t

k location in
leader’s log

Log is
(conceptually)
broadcast to

the other
servers.

Others
(conceptually)
copy the log

Acknowledge
receipt.

When
majority of
acks arrive

Leader
commits o

Leader
responds to

client

26 Jan 2025 SE 424: Distributed Systems 31

Image source and © https://raft.github.io/

Log replication in practice

• Only updates are really broadcast

• At the end, every server has the

same view and knows about the c

committed operations.

• Effectively, any information at the

backups is overwritten.

• If a follower doesn’t ack an

operation, leader will keep sending

until it does

• Follower has pending

operations list that can be

overwritten if a new leader

takes over

• If a new leader has a larger

term or more operations in log,

followed makes its log adapt

26 Jan 2025 SE 424: Distributed Systems 32

Image source and © https://raft.github.io/

Raft Crashing

26 Jan 2025 SE 424: Distributed Systems 33

Image source and © https://raft.github.io/

Raft Crashing

1. Client 𝐶1 sends an operation 𝑜1

to the leader (𝑆2)

2. 𝑆2 records 𝑜1 as index 1 term 1

3. 𝑆2 sends Apply (APP) messages

to others ⟨𝐴𝑃𝑃, 𝑜1, 1,1⟩

4. Majority acknowledge – 𝑆1, 𝑆3, 𝑆4

5. 𝑆5 does not receive APP

6. 𝑆2 commits 𝑜1

7. 𝑆2 crashes

26 Jan 2025 SE 424: Distributed Systems 34

Image source and © https://raft.github.io/

Raft Crashing
1. 𝑆4 notices crash, declares

candidacy

2. 𝑆4 elected leader

3. Client 𝐶2 sends an operation 𝑜2 to
leader (𝑆4)

4. 𝑆4 records 𝑜2 as index 2 term 2

5. 𝑆4 sends APP messages
⟨𝐴𝑃𝑃, 𝑜2, 2,2⟩

6. Majority acknowledge

7. 𝑆4 commits 𝑜1, 𝑜2

8. 𝑆4 sends heartbeat message (HB)
with current index (2)

– Includes entire log

9. 𝑆1, 𝑆3, 𝑆5 commit 𝑜1

26 Jan 2025 SE 424: Distributed Systems 35

Image source and © https://raft.github.io/

Paxos: A hint

Assumptions

• Partially synchronous (may even be

asynchronous)

• Communication between processes may

be unreliable

– lost, duplicated, reordered

• Corrupted message can be detected (and

ignored)

• All operations are deterministic

– Once an execution is started, we know

exactly what it will do

• Processes crash-fail, but not arbitrary fail

• Processes do not collude

Essentials

• Assume a client-server configuration, with

initially one primary server (the leader)

• For robustness, we add a backup server

• To ensure that all commands are

executed in the same order at both

servers, primary assigns unique sequence

numbers to all commands

• Actual commands can always be restored

(either from clients or servers), so we

consider only control messages.

26 Jan 2025 SE 424: Distributed Systems 36

For more info, read the paper

• Kirsch J. and Amir Y. Paxos for System Builders. Technical Report CNDS-2008-2, John Hopkins University, Mar.
2008 http://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

26 Jan 2025 SE 424: Distributed Systems 37

Failure Detection

Issue

How can we reliably detect that a process has actually crashed?

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process 𝑞 for a reaction

– 𝑞 reacts → 𝑞 is alive

– 𝑞 does not react within t time unites → 𝑞 is suspected to have crashed

• Note: in a synchronous system:

– A suspected crash is a known crash

– Referred to as a perfect failure detector

26 Jan 2025 SE 424: Distributed Systems 38

Failure Detection
• Practice: the eventually perfect failure detector

• Has two important properties:
– Strong completeness: every crashed process is eventually suspected to have crashed by

every correct process

– Eventual strong accuracy: eventually, no correct process is suspected by any other correct
process to have crashed

• Implementation:
– If 𝑝 did not receive heartbeat from 𝑞 within time 𝑡 → 𝑝 suspects 𝑞

– If 𝑞 later sends a message (received by 𝑝):

• 𝑝 stops suspecting 𝑞

• 𝑝 increases timeout value 𝑡

• Note: If 𝑞 does crash, 𝑝 will keep suspecting 𝑞

26 Jan 2025 SE 424: Distributed Systems 39

Reliable Communication

So far: Concentrated on process resilience (by process groups). What about

reliable communication channels?

Error detection:

• Framing of packets to allows for bit error detection

• Use of frame numbering to detect packet loss

Error correction:

• Add so much redundancy that corrupted packets can be automatically

corrected.

• Request retransmission of lost, or last N packets

26 Jan 2025 SE 424: Distributed Systems 40

Reliable RPC

RPC Communication: What can go wrong?

26 Jan 2025 SE 424: Distributed Systems 41

1: Client
can’t locate

server

2: Client
request is

lost

3: Server
crashes

4: Server
response is

lost

5: Client
crashes

Solutions: #1: Client can’t locate server

Relatively simple – just report back to client

26 Jan 2025 SE 424: Distributed Systems 42

Solutions: #2: Client request is lost

Just resend the request

26 Jan 2025 SE 424: Distributed Systems 43

Solutions: #3 Server Crashes

Harder because you don’t know what server did:

Need to decide on what we expect from the server:

• At-least-once semantics: The server guarantees it will carry out an operation at

least once

• At-most-once-semantics: The server guarantees it will carry out an operation at

most once.

26 Jan 2025 SE 424: Distributed Systems 44

Solutions: #4 Server Response Lost

Detecting lost replies can be

hard, because it can also be that

the server had crashed. You

don’t know whether the server

has carried out the operation.

• Solution: None, except that you

can try to make your

operations idempotent:

repeatable without any harm

done if it happened to be

carried out before.

26 Jan 2025 SE 424: Distributed Systems 45

Solutions: #5 Client crashes

Problem: The server is doing work and holding resources for nothing (called

doing an orphan computation).

• Orphan is killed (or rolled back) by client when it reboots

• Broadcast new epoch number when recovering → servers kill orphans

• Requires computations to complete in 𝑇 time units. Old ones are simply

removed.

Question: What’s the rolling back for?

26 Jan 2025 SE 424: Distributed Systems 46

Groups and Failure Masking

• 𝑘-Fault-tolerant group: When a group can mask any 𝑘 concurrent

member failures (𝑘 is called degree of fault tolerance).

• How large must a 𝑘-fault-tolerant group be:

– With halting failures (crash/omission/timing failures): we need 𝑘 +
1 members: no member will produce an incorrect result, so the result of one

member is good enough.

– With arbitrary failures: we need 2𝑘 + 1 members: the correct result can be

obtained only through a majority vote.

26 Jan 2025 SE 424: Distributed Systems 47

Groups and Failure Masking

• Important:

– All members are identical

– All members process commands in the same order

• Result:

– Only then do we know that all processes are programmed to do exactly the same thing

Observation

The processes need to have consensus on which command to execute next

26 Jan 2025 SE 424: Distributed Systems 48

Flood-based Consensus

• Assume:

– Fail-crash semantics

– Reliable failure detection

– Unreliable communication

• Basic idea:

– Processes multicast their proposed operations

– All apply the same selection procedure → all processes will execute the same if no failures

occur

• Problem:

– Suppose a process crashes before completing its multicast

26 Jan 2025 SE 424: Distributed Systems 49

Flood-based Consensus

26 Jan 2025 SE 424: Distributed Systems 50

P1 crashes

P2 has received all proposed

commands and decides

P3 and P4

have received

all proposed

commands

take same

decision as P2

Failure Detection

Issue

How can we reliably detect that a process has actually crashed?

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process 𝑞 for a reaction

– 𝑞 reacts → 𝑞 is alive

– 𝑞 does not react within t time unites → 𝑞 is suspected to have crashed

• Note: in a synchronous system:

– A suspected crash is a known crash

– Referred to as a perfect failure detector

26 Jan 2025 SE 424: Distributed Systems 51

Failure Detection
• Practice: the eventually perfect failure detector

• Has two important properties:
– Strong completeness: every crashed process is eventually suspected to have crashed by

every correct process

– Eventual strong accuracy: eventually, no correct process is suspected by any other correct
process to have crashed

• Implementation:
– If 𝑝 did not receive heartbeat from 𝑞 within time 𝑡 → 𝑝 suspects 𝑞

– If 𝑞 later sends a message (received by 𝑝):

• 𝑝 stops suspecting 𝑞

• 𝑝 increases timeout value 𝑡

• Note: If 𝑞 does crash, 𝑝 will keep suspecting 𝑞

26 Jan 2025 SE 424: Distributed Systems 52

Reliable Communication

So far: Concentrated on process resilience (by process groups). What about

reliable communication channels?

Error detection:

• Framing of packets to allows for bit error detection

• Use of frame numbering to detect packet loss

Error correction:

• Add so much redundancy that corrupted packets can be automatically

corrected.

• Request retransmission of lost, or last N packets

26 Jan 2025 SE 424: Distributed Systems 53

Reliable RPC

RPC Communication: What can go wrong?

1. Client can’t locate server

2. Client request is lost

3. Server crashes

4. Server response is lost

5. Client crashes

RPC Communication: Solutions

1. Relatively simple – just report back to client

2. Just resend message

26 Jan 2025 SE 424: Distributed Systems 54

RPC: Solutions

3. Server crashes: Server crashes are harder as you don’t know what it had

already done:

Need to decide on what we expect from the server:

• At-least-once semantics: The server guarantees it will carry out an operation at

least once

• At-most-once-semantics: The server guarantees it will carry out an operation at

most once.

26 Jan 2025 SE 424: Distributed Systems 55

Reliable RPC

Server response is lost: Detecting lost replies can be hard, because it can also be

that the server had crashed. You don’t know whether the server has carried out

the operation.

Solution: None, except that you can try to make your operations idempotent:

repeatable without any harm done if it happened to be carried out before.

26 Jan 2025 SE 424: Distributed Systems 56

Reliable RPC: Client crashes

Problem: The server is doing work and holding resources for nothing (called

doing an orphan computation).

• Orphan is killed (or rolled back) by client when it reboots

• Broadcast new epoch number when recovering → servers kill orphans

• Requires computations to complete in 𝑇 time units. Old ones are simply

removed.

Question: What’s the rolling back for?

26 Jan 2025 SE 424: Distributed Systems 57

So Far

• Failures and Resilience

• Raft and Consensus

• Cyber 3: Consensus and Failure

26 Jan 2025 SE 424: Distributed Systems 58

Consistency and Consensus Cyber

26 Jan 2025 SE 424: Distributed Systems 59

Assets

System
Goals

Risks and
Threats

Detection

Response

Assets – Consistency and Consensus

Databases Data items
Transaction

servers

Transaction
logs

Communication
links

Communication
protocols

26 Jan 2025 SE 424: Distributed Systems 60

System Goals – Consistency and Consensus

Provide
consistent data

Allow timely
writing

Keep nodes up
to date

Don’t lose data
or transactions

Permit servers
to come and

leave

Tolerate failure
and recover

Make it “just
work” from user

perspective

Identify
problematic

operations and
undo/flag

26 Jan 2025 SE 424: Distributed Systems 61

Risks and Threats – Consistency and Consensus

Malicious
customers/users
provide bad data

Network provider
disrupts

communication

Malicious server
corrupts data

Misconfigured
user/server causes

system freeze

Misconfigured
user/server causes

system crash

Crash occurs, losing
data or transactions

Network
communications lag
too much, breaking
time assumptions

26 Jan 2025 SE 424: Distributed Systems 62

Detection - Consistency and Consensus

Event monitoring
Dashboards for

performance

Watch for
network

heartbeats and
updates

Watch for client
interaction

delays

Test data for
consistency and
responsiveness

Monitor server
communications
and down time

Run test jobs to
ensure they

complete on time
and consistently

26 Jan 2025 SE 424: Distributed Systems 63

Response

Ignore/kick out
malicious

users/customers

Bring up additional
servers when
crashes occur

Watch for network
partitions

Locate data near
where it’s needed

to provide service in
case of outage

Add servers or
bandwidth

connections if
crashes occur often

26 Jan 2025 SE 424: Distributed Systems 64

Conclusion

• Failures and Resilience

26 Jan 2025 SE 424: Distributed Systems 65

	Default Section
	Slide 1: Fault Tolerance and Resilience, Raft, Cyber 3 26 January 2025 Lecture 12
	Slide 2: Topics for Today

	Failures and Resilience
	Slide 3: Dependability
	Slide 4: Reliability versus Availability
	Slide 5: Reliability versus Availability
	Slide 6: Terminology
	Slide 7: Handling Faults
	Slide 8: Handling Faults
	Slide 9: Failure models
	Slide 10: Failure models
	Slide 11: Dependability versus Security
	Slide 12: Halting Failures
	Slide 13: Halting Failures
	Slide 14: https://xkcd.com/2209/
	Slide 15: Halting Failures Assumptions
	Slide 16: Ways to Mask Failure

	Process Resilience
	Slide 17: So Far
	Slide 18: Process Resilience
	Slide 19: Groups and Failure Masking
	Slide 20: Groups and Failure Masking
	Slide 21: Flood-based Consensus
	Slide 22: Flood-based Consensus
	Slide 23: Flood-based Consensus
	Slide 24: Raft
	Slide 25: Leader election in Raft
	Slide 26: Selecting a new Leader
	Slide 27: Selecting a new Leader 1
	Slide 28: Selecting a new Leader 2
	Slide 29: Things could go wrong
	Slide 30: Things could go wrong
	Slide 31: Submitting an operation
	Slide 32: Log replication in practice
	Slide 33: Raft Crashing
	Slide 34: Raft Crashing
	Slide 35: Raft Crashing
	Slide 36: Paxos: A hint
	Slide 37

	Failure Detection
	Slide 38: Failure Detection
	Slide 39: Failure Detection
	Slide 40: Reliable Communication
	Slide 41: Reliable RPC
	Slide 42: Solutions: #1: Client can’t locate server
	Slide 43: Solutions: #2: Client request is lost
	Slide 44: Solutions: #3 Server Crashes
	Slide 45: Solutions: #4 Server Response Lost
	Slide 46: Solutions: #5 Client crashes
	Slide 47: Groups and Failure Masking
	Slide 48: Groups and Failure Masking
	Slide 49: Flood-based Consensus
	Slide 50: Flood-based Consensus
	Slide 51: Failure Detection
	Slide 52: Failure Detection
	Slide 53: Reliable Communication
	Slide 54: Reliable RPC
	Slide 55: RPC: Solutions
	Slide 56: Reliable RPC
	Slide 57: Reliable RPC: Client crashes

	Cyber Consensus
	Slide 58: So Far
	Slide 59: Consistency and Consensus Cyber
	Slide 60: Assets – Consistency and Consensus
	Slide 61: System Goals – Consistency and Consensus
	Slide 62: Risks and Threats – Consistency and Consensus
	Slide 63: Detection - Consistency and Consensus
	Slide 64: Response
	Slide 65: Conclusion

