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Fault Tolerance and 

Resilience, Raft, Cyber 3

26 January 2025

Lecture 12

Slide Credits: Maarten van Steen



Topics for Today

• Failures and Resilience

• Raft and Consensus

• Cyber 3: Consensus and Failure

• Source: TvS 8
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Dependability

• A component provides services to clients. To provide services, the component 

may require the services from other components → a component may depend 

on some other component.

• A component 𝐶 depends on 𝐶∗ if the correctness of 𝐶's behavior depends on 

the correctness of 𝐶∗ 's behavior.

• Note: in the context of distributed systems, components are generally 

processes or channels.
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Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easily can a failed system be repaired



Reliability versus Availability

• Reliability 𝑅(𝑡): probability that a component has been up and running 

continuously in the time interval [0, 𝑡):

• Traditional metrics:
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Mean Time to Failure 
(𝑀𝑇𝑇𝐹): Average time 
until a component fails

Mean Time to Repair 
(𝑀𝑇𝑇𝑅): Average time it 
takes to repair a failed 

component.

Mean Time Between Failures 
(𝑀𝑇𝐵𝐹): 𝑀𝑇𝑇𝐹 +  𝑀𝑇𝑇𝑅



Reliability versus Availability

Availability 𝐴(𝑡): Average fraction of time that a component has been up and 

running in the interval [0, 𝑡):

• (Long term) availability 𝐴: 𝐴(∞)

Note:

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅

Observation

Reliability and availability make sense only if we have an accurate notion of what 

a failure is
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Terminology

Term Description Example

Failure May occur when a component is 

not living up to its specification

A crashed 

program

Error Part of a component that may 

lead to a failure

A programming 

bug

Fault The cause of an error A sloppy 

programmer
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Handling Faults
Term Description Example

Fault Prevention Prevent the occurrence of 

a fault

Don’t hire sloppy 

programmers

Fault Tolerance Build a component such 

that it can mask the 

occurrence of a fault

Build each component by 

two independent 

programmers

Fault Removal Reduce the presence, 

number, or seriousness 

of a fault

Get rid of sloppy 

programmers

Fault Forecasting Estimate current 

presence, future 

incidence, and 

consequences of bugs

Estimate how a recruiter 

is doing when it comes to 

hiring sloppy 

programmers
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Handling Faults
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Image: https://xkcd.com/1700/



Failure models
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• Halt, but correct behavior until halting

Crash failures:

• Failure in sending or receiving messages

• Receiving omissions: Sent messages are not 
received

• Send omissions: Messages are not sent that should 
have

General omission failures:

• Correct output but provided outside a specified time 
interval.

Timing failures:



Failure models
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• Response is incorrect

• Value failures: Wong output values

• State transition failures: Deviation 
from correct flow of control

Response failures:

• May produce arbitrary responses at 
arbitrary times

Arbitrary failures:



Dependability versus Security

• Omission failure: A component fails to take an action that it should have taken

• Commission failure: A component takes an action that it should not have taken

Observations

Deliberate failures, be they omission or commission failures, stretch out to the 

field of security

There is a thin line between dependability and security
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Halting Failures

Scenario: 𝐶 no longer perceives any activity from 𝐶∗ → a 

halting failure? Distinguishing between a crash or 

omission/timing failure may be impossible:
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Asynchronous 
system

• No assumptions about 
process execution speeds 
or message delivery 
times

• → cannot reliably detect 
crash failures.

Synchronous system

• Process execution 
speeds and message 
delivery times are 
bounded

• → we can reliably detect 
omission and timing 
failures.



Halting Failures

Scenario: 𝐶 no longer perceives any activity from 𝐶∗ → a 

halting failure? Distinguishing between a crash or 

omission/timing failure may be impossible:
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Partially synchronous 
systems

• Most of the time, we can assume 
the system to be synchronous

• Yet there is no bound on the time 
that a system is asynchronous

• → can normally reliably detect 
crash failures



https://xkcd.com/2209/
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Halting Failures Assumptions
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Fail-stop: Crash 
failures, but reliably 

detectable

Fail-noisy: Crash 
failures, eventually 
reliably detectable

Fail-silent: Omission 
or crash failures: 
clients cannot tell 
what went wrong.

Fail-safe: Arbitrary, 
yet benign failures 

(can't do any harm).

Fail-arbitrary: 
Arbitrary, with 

malicious failures



Ways to Mask Failure

Information redundancy

• Add extra bits to data units 
so that errors can recovered 
when bits are garbled.

Time redundancy

• Design a system so actions 
can be performed again if 
something is wrong. 

• Used when faults are 
transient or intermittent.

Physical redundancy

• Add equipment or processes 
to allow failure of one or 
more components

• Extensively used in 
distributed systems.
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So Far

• Failures and Resilience

• Raft and Consensus

• Cyber 3: Consensus and Failure
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Process Resilience

Basic idea: protect yourself against faulty processes through process replication:
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Groups and Failure Masking

𝑘-Fault-tolerant group

• When a group can mask any 𝑘 
concurrent member failures

• 𝑘 is degree of fault tolerance

Group size

Halting failures:

• 𝑘 + 1 members: no member 
will produce an incorrect 
result, so one good member 
suffices

Arbitrary failures

• 2𝑘 + 1 members: Correct 
result can be obtained only 
through a majority vote.
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Groups and Failure Masking

• Important:

– All members are identical

– All members process commands in the same order

• Result:

– Only then do we know that all processes are programmed to do exactly the same thing

Observation

The processes need to have consensus on which command to execute next
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Flood-based Consensus

System Model

• Process group 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}

• Fail-stop semantics

• Reliable failure detection

• Client contacts 𝑃𝑖 requesting it to 

execute a command

• Every 𝑃𝑖 maintains a list of 

proposed commands

Basic idea (Rounds)

• Round 𝑟, 𝑃𝑖 multicasts its known set 

of commands 𝐶𝑖
𝑟 to all others

• At the end of 𝑟, each 𝑃𝑖 merges all 

received commands into new 𝐶𝑖
𝑟+1

• Next command 𝑐𝑚𝑑𝑖 selected 

through globally shared 

deterministic function 𝑐𝑚𝑑𝑖 ←
𝑠𝑒𝑙𝑒𝑐𝑡(𝐶𝑖

𝑟+1)
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Flood-based Consensus
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𝑃1 crashes 𝑃2 received all proposed

commands ➔ Decides

• 𝑃3 may detect  

𝑃1 crashed, 

but does not 

know if 𝑃2 

received 

anything

• 𝑃3 cannot 

know if it has 

same 

information as 

𝑃2 → cannot 

make decision



Flood-based Consensus
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𝑃1 crashes 𝑃2 received all proposed

commands ➔ Decides

• 𝑃3 and 𝑃4 can’t 

decide yet – 

they know 𝑃1 

crashed

• 𝑃2 tells the 

others what it 

decided

• 𝑃3 and 𝑃4 then 

follows 𝑃2’s 

choice



Raft

• Developed for understandability

26 Jan 2025 SE 424: Distributed Systems 24

Image source and © https://raft.github.io/

Straightforward leader-
election algorithm

• Current leader operates 
during the current term.

Log

• Every server (5) keeps a log 
of operations, some of which 
have been committed.

• Backup will not vote for a new 
leader if its own log is more 
up to date.

All committed operations 
have the same position 

in the log of every 
server.

Leader decides which 
pending operation is to 
be committed next

• ⇒ a primary-backup 
approach.



Leader election in Raft

Relatively small group of 
servers

States

• Follower

• Candidate

• Leader

Each server starts in the 
follower state.

Protocol works in terms, 
starting with term 0

A leader regularly 
broadcasts messages

• Updates or

• A simple heartbeat
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Selecting a new Leader

Follower A hasn’t 
received anything from 
leader L for some time

A broadcasts that it 
volunteers to be the 

next leader, increasing 
the term by 1. 

A enters the candidate 
state.
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Selecting a new Leader 1

Leader L receives the 
election message

Responds by 
acknowledging that it is 

still the leader.

A returns to the 
follower state.

End
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Selecting a new Leader 2

Another follower 
B gets the 

election message 
from A

B hasn’t heard 
other candidates 

in the current 
round

B votes for A. 

A collects a 
majority of votes

A is leader of new 
term

End

26 Jan 2025 SE 424: Distributed Systems 28

Image source and © https://raft.github.io/



Things could go wrong

Multiple Candidates, no Majority

• Two candidates started

– Both received 2 votes

• Election times out, try again

• Solution: Slightly differ the timeout 

values per follower for deciding 

when to start an election

• Avoids concurrent elections

Network Partition

• Network divided into parts

• Part with majority elects leader

• Part with minority doesn’t elect 

leader

• Solution: Minority part doesn’t 

commit anything

• When network heals, minority part 

re-syncs
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Things could go wrong

Bad Candidate 

• Candidate has less up to date log 

than recipient

• Might lead to leader who is ignorant

• Solution: Node will not vote for 

candidate who is less up to date

• Eventually most up to date node will 

candidate

Animation Project

• http://thesecretlivesofdata.com/raft/
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Submitting an operation

Client 
submits a 
request for 
operation o.

Leader 
appends the 

request 
⟨𝑜, 𝑡 , 𝑘⟩ to its 

own log 

Current term t 

k location in 
leader’s log

Log is 
(conceptually) 
broadcast to 

the other 
servers.

Others 
(conceptually) 
copy the log

Acknowledge 
receipt.

When 
majority of 
acks arrive

Leader 
commits o

Leader 
responds to 

client
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Log replication in practice

• Only updates are really broadcast

• At the end, every server has the 

same view and knows about the c 

committed operations.

• Effectively, any information at the 

backups is overwritten.

• If a follower doesn’t ack an 

operation, leader will keep sending 

until it does

• Follower has pending 

operations list that can be 

overwritten if a new leader 

takes over

• If a new leader has a larger 

term or more operations in log, 

followed makes its log adapt
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Raft Crashing
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Raft Crashing

1. Client 𝐶1 sends an operation 𝑜1 

to the leader (𝑆2)

2. 𝑆2 records 𝑜1 as index 1 term 1

3. 𝑆2 sends Apply (APP) messages 

to others ⟨𝐴𝑃𝑃, 𝑜1, 1,1⟩

4. Majority acknowledge – 𝑆1, 𝑆3, 𝑆4

5. 𝑆5 does not receive APP

6. 𝑆2 commits 𝑜1

7. 𝑆2 crashes
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Raft Crashing
1. 𝑆4 notices crash, declares 

candidacy

2. 𝑆4 elected leader

3. Client 𝐶2 sends an operation 𝑜2 to 
leader (𝑆4)

4. 𝑆4 records 𝑜2 as index 2 term 2

5. 𝑆4 sends APP messages 
⟨𝐴𝑃𝑃, 𝑜2, 2,2⟩

6. Majority acknowledge

7. 𝑆4 commits 𝑜1, 𝑜2

8. 𝑆4 sends heartbeat message (HB) 
with current index (2)

– Includes entire log

9. 𝑆1, 𝑆3, 𝑆5 commit 𝑜1
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Paxos: A hint

Assumptions

• Partially synchronous (may even be 

asynchronous)

• Communication between processes may 

be unreliable

– lost, duplicated, reordered

• Corrupted message can be detected (and 

ignored)

• All operations are deterministic

– Once an execution is started, we know 

exactly what it will do

• Processes crash-fail, but not arbitrary fail

• Processes do not collude

Essentials

• Assume a client-server configuration, with 

initially one primary server (the leader)

• For robustness, we add a backup server

• To ensure that all commands are 

executed in the same order at both 

servers, primary assigns unique sequence 

numbers to all commands

• Actual commands can always be restored 

(either from clients or servers), so we 

consider only control messages.
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For more info, read the paper

• Kirsch J. and Amir Y. Paxos for System Builders. Technical Report CNDS-2008-2, John Hopkins University, Mar. 
2008 http://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf
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Failure Detection

Issue

How can we reliably detect that a process has actually crashed?

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process 𝑞 for a reaction

– 𝑞 reacts → 𝑞 is alive

– 𝑞 does  not react within t time unites → 𝑞 is suspected to have crashed

• Note: in a synchronous system:

– A suspected crash is a known crash

– Referred to as a perfect failure detector
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Failure Detection
• Practice: the eventually perfect failure detector

• Has two important properties:
– Strong completeness: every crashed process is eventually suspected to have crashed by 

every correct process

– Eventual strong accuracy: eventually, no correct process is suspected by any other correct 
process to have crashed

• Implementation:
– If 𝑝 did not receive heartbeat from 𝑞 within time 𝑡 → 𝑝 suspects 𝑞

– If 𝑞 later sends a message (received by 𝑝):

• 𝑝 stops suspecting 𝑞

• 𝑝 increases timeout value 𝑡

• Note: If 𝑞 does crash, 𝑝 will keep suspecting 𝑞
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Reliable Communication

So far: Concentrated on process resilience (by process groups). What about 

reliable communication channels?

Error detection:

• Framing of packets to allows for bit error detection

• Use of frame numbering to detect packet loss

Error correction:

• Add so much redundancy that corrupted packets can be automatically 

corrected.

• Request retransmission of lost, or last N packets
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Reliable RPC

RPC Communication: What can go wrong?
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1: Client 
can’t locate 

server

2: Client 
request is 

lost

3: Server 
crashes

4: Server 
response is 

lost

5: Client 
crashes



Solutions: #1: Client can’t locate server

Relatively simple – just report back to client
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Solutions: #2: Client request is lost

Just resend the request
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Solutions: #3 Server Crashes

Harder because you don’t know what server did:

Need to decide on what we expect from the server:

• At-least-once semantics: The server guarantees it will carry out an operation at 

least once

• At-most-once-semantics: The server guarantees it will carry out an operation at 

most once.
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Solutions: #4 Server Response Lost

Detecting lost replies can be 

hard, because it can also be that 

the server had crashed. You 

don’t know whether the server 

has carried out the operation.

• Solution: None, except that you 

can try to make your 

operations idempotent: 

repeatable without any harm 

done if it happened to be 

carried out before.
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Solutions: #5 Client crashes

Problem: The server is doing work and holding resources for nothing (called 

doing an orphan computation).

• Orphan is killed (or rolled back) by client when it reboots

• Broadcast new epoch number when recovering → servers kill orphans

• Requires computations to complete in 𝑇 time units.  Old ones are simply 

removed.

Question: What’s the rolling back for?
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Groups and Failure Masking

• 𝑘-Fault-tolerant group: When a group can mask any 𝑘 concurrent 

member failures (𝑘 is called degree of fault tolerance).

• How large must a 𝑘-fault-tolerant group be: 

– With halting failures (crash/omission/timing failures): we need 𝑘 +
1 members: no member will produce an incorrect result, so the result of one 

member is good enough.

– With arbitrary failures: we need 2𝑘 + 1 members: the correct result can be 

obtained only through a majority vote.
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Groups and Failure Masking

• Important:

– All members are identical

– All members process commands in the same order

• Result:

– Only then do we know that all processes are programmed to do exactly the same thing

Observation

The processes need to have consensus on which command to execute next
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Flood-based Consensus

• Assume:

– Fail-crash semantics

– Reliable failure detection

– Unreliable communication

• Basic idea:

– Processes multicast their proposed operations

– All apply the same selection procedure → all processes will execute the same if no failures 

occur

• Problem:

– Suppose a process crashes before completing its multicast
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Flood-based Consensus
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P1 crashes

P2 has received all proposed

commands and decides

P3 and P4 

have received 

all proposed 

commands 

take same 

decision as P2



Failure Detection

Issue

How can we reliably detect that a process has actually crashed?

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process 𝑞 for a reaction

– 𝑞 reacts → 𝑞 is alive

– 𝑞 does  not react within t time unites → 𝑞 is suspected to have crashed

• Note: in a synchronous system:

– A suspected crash is a known crash

– Referred to as a perfect failure detector
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Failure Detection
• Practice: the eventually perfect failure detector

• Has two important properties:
– Strong completeness: every crashed process is eventually suspected to have crashed by 

every correct process

– Eventual strong accuracy: eventually, no correct process is suspected by any other correct 
process to have crashed

• Implementation:
– If 𝑝 did not receive heartbeat from 𝑞 within time 𝑡 → 𝑝 suspects 𝑞

– If 𝑞 later sends a message (received by 𝑝):

• 𝑝 stops suspecting 𝑞

• 𝑝 increases timeout value 𝑡

• Note: If 𝑞 does crash, 𝑝 will keep suspecting 𝑞
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Reliable Communication

So far: Concentrated on process resilience (by process groups). What about 

reliable communication channels?

Error detection:

• Framing of packets to allows for bit error detection

• Use of frame numbering to detect packet loss

Error correction:

• Add so much redundancy that corrupted packets can be automatically 

corrected.

• Request retransmission of lost, or last N packets
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Reliable RPC

RPC Communication: What can go wrong?

1. Client can’t locate server

2. Client request is lost

3. Server crashes

4. Server response is lost

5. Client crashes

RPC Communication: Solutions

1. Relatively simple – just report back to client

2. Just resend message
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RPC: Solutions

3. Server crashes: Server crashes are harder as you don’t know what it had 

already done:

Need to decide on what we expect from the server:

• At-least-once semantics: The server guarantees it will carry out an operation at 

least once

• At-most-once-semantics: The server guarantees it will carry out an operation at 

most once.
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Reliable RPC

Server response is lost: Detecting lost replies can be hard, because it can also be 

that the server had crashed. You don’t know whether the server has carried out 

the operation.

Solution: None, except that you can try to make your operations idempotent: 

repeatable without any harm done if it happened to be carried out before.
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Reliable RPC: Client crashes

Problem: The server is doing work and holding resources for nothing (called 

doing an orphan computation).

• Orphan is killed (or rolled back) by client when it reboots

• Broadcast new epoch number when recovering → servers kill orphans

• Requires computations to complete in 𝑇 time units.  Old ones are simply 

removed.

Question: What’s the rolling back for?

26 Jan 2025 SE 424: Distributed Systems 57



So Far

• Failures and Resilience

• Raft and Consensus

• Cyber 3: Consensus and Failure
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Consistency and Consensus Cyber
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Assets

System 
Goals

Risks and 
Threats

Detection

Response



Assets – Consistency and Consensus

Databases Data items
Transaction 

servers

Transaction 
logs

Communication 
links

Communication 
protocols
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System Goals – Consistency and Consensus

Provide 
consistent data

Allow timely 
writing

Keep nodes up 
to date

Don’t lose data 
or transactions

Permit servers 
to come and 

leave

Tolerate failure 
and recover

Make it “just 
work” from user 

perspective

Identify 
problematic 

operations and 
undo/flag
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Risks and Threats – Consistency and Consensus

Malicious 
customers/users 
provide bad data

Network provider 
disrupts 

communication

Malicious server 
corrupts data

Misconfigured 
user/server causes 

system freeze

Misconfigured 
user/server causes 

system crash

Crash occurs, losing 
data or transactions

Network 
communications lag 
too much, breaking 
time assumptions
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Detection - Consistency and Consensus

Event monitoring
Dashboards for 

performance

Watch for 
network 

heartbeats and 
updates

Watch for client 
interaction 

delays

Test data for 
consistency and 
responsiveness

Monitor server 
communications 
and down time

Run test jobs to 
ensure they 

complete on time 
and consistently
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Response

Ignore/kick out 
malicious 

users/customers

Bring up additional 
servers when 
crashes occur

Watch for network 
partitions

Locate data near 
where it’s needed 

to provide service in 
case of outage

Add servers or 
bandwidth 

connections if 
crashes occur often
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Conclusion

• Failures and Resilience
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