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Topics for Today

• Logical clocks

– Causally ordered multicast

• Data Oriented Consistency

Sources: 

• TvS 6.4, 7.1-7.3
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Causally Ordered Multicasting

Observation: We can now ensure that a message is 

delivered only if all causally preceding messages have 

already been delivered.

Adjustment: 𝑃𝑖 increments 𝑉𝐶𝑖[𝑖] only when sending a 

message, and 𝑃𝑗 “adjusts” 𝑉𝐶𝑗 when receiving a message 

(i.e., effectively does not change 𝑉𝐶𝑗[𝑗]).

𝑃𝑗 postpones delivery of 𝑚 until:

• 𝑡𝑠(𝑚)[𝑖] = 𝑉𝐶𝑗[𝑖] + 1.

• 𝑡𝑠 𝑚 𝑘 ≤ 𝑉𝐶𝑗[𝑘] for 𝑘 ≠ 𝑖
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Causally Ordered Multicasting

Example 1:

𝑃0

𝑃1

𝑃2

𝑉𝐶0 = (1,0,0)

𝑚1

𝑉𝐶1 = (1,1,0)

𝑚2

𝑉𝐶0 = (1,1,0)

𝑉𝐶2 = (0,0,0)

Wait!

𝑉𝐶2 = (1,0,0) 𝑉𝐶2 = (1,1,0)

𝑉𝐶1 = (1,0,0)



Causally Ordered Multicasting

Example 2:

Take VC2 = (0,2,2) at 𝑃2

𝑃2 receives a message with 𝑡𝑠(𝑚) = (1,3,0) from 𝑃0.

What information does 𝑃2 have, and what will it do when it 

receives 𝑚 (from 𝑃0)?
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Causally Ordered Multicast 1

𝑃1 𝑃2

𝑃3

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑚1

𝑚2

𝑚3

delayedwait
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Causally Ordered Multicast 2

𝑃1 𝑃2

𝑃3

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑚1

𝑚2

𝑚3

delayed
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Vector Clocks and COM
Vector clocks

Rule 1: Each process has its own 
clock and a version of every other 
processes’ clock.

Rule 2: Each process increments its 
own clock when it sends or 
receives a message.

Rule 3: When a process receives a 
message from another process it 
updates its version of the other 
clocks’ timestamps if the received 
timestamp is larger

Causally Ordered Multicast

Rule 1: Each process has its own 
clock and a version of every other 
processes’ clock.

Rule 2: Each process increments its 
own clock when it sends a 
message.

Rule 3: When a process receives a 
message from another process it 
updates its version of the sender’s 
timestamp.

Rule 4: A message is delivered only if 
it is “next in line”:

1. It’s the next expected one for the 
sender

2. The message’s timestamp is less 
than or equal to the local clock.
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So Far

• Logical clocks

– Causally ordered multicast

• Data Oriented Consistency
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Performance and Scalability
Main issue: To keep replicas consistent, we generally need to ensure 

that all conflicting operations are done in the same order 

everywhere

Conflicting operations: From the world of transactions:

• Read–write conflict: a read operation and a write operation act 

concurrently

• Write–write conflict: two concurrent write operations

Guaranteeing global ordering on conflicting operations may be a 

costly operation, downgrading scalability

Solution: weaken consistency requirements so that hopefully global 

synchronization can be avoided



4 March 2024 SE 424: Distributed Systems 11

Data-Centric Consistency Models

Consistency model: a contract between a (distributed) data store and 

processes, in which the data store specifies precisely what the results 

of read and write operations are in the presence of concurrency.

Essence: A data store is a distributed collection of storages accessible to 

clients:
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Continuous Consistency

Observation: We can actually talk a about a degree of 

consistency:

• replicas may differ in their numerical value

– Value may be how many updates are missing

– Weight may be the mathematical distance 

• replicas may differ in their relative staleness

• there may be differences with respect to (number and 

order) of performed update operations

Conit: consistency unit → specifies the data unit over which 

consistency is to be measured.
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Example: Conit Dimensions

Replica

A

Replica

B

x := y * 23602[14,5]

y := y + 13202[12,5]

y := y +22202[8,5]

Commit [0,5]0202[1,5]

Receive [0,5] 

from B
0200[0,5]

Init0000[0,0]

yxyx
Event

TentativeCommittedVC

[A,B]

y := y + 55200[0,10]

Send [0,5] to 

A
0200[0,6]

x := x+20200[0,5]

Init0000[0,0]

yxyx
Event

TentativeCommittedVC

[A,B]

• Dimension 1: Updates received, not committed: A = 3, B = 2

• Dimension 2: Updates a replica didn’t see: A = 1, B = 3

• Dimension 3: Numerical deviation from missing updates:

• A = 5 (x missing 0, y missing 5),  B = 6 (x missing 6, y missing 3)
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Conits
• The granularity of your conit is important

• With a given consistency policy:

– Smaller conits mean you may defer pushing updates

– Bigger conits mans you must push earlier

Example: Do you update a whole table? Each row in the table? Each 

entry/cell in the row?
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Sequential Consistency
The result of any execution is the 
same as if the operations of all 
processes were executed in some 
sequential order, and the 
operations of each individual 
process appear in this sequence in 
the order specified by its program.

Note: We’re talking about 

interleaved executions: there is 

some total ordering for all 

operations taken together.

P2,P1

P1,P2

read

𝑥 → 𝑎

read

𝑥 → 𝑎

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

𝑥 ≔ 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑎

read

𝑥 → 𝑏

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

𝑥 ≔ 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑎



Sequential Consistency
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Append to log:

“Bob was here”

Append to log:

“Alice was here”

Sync Sync

Potential log contents:

Alice was here

Bob was here

Bob was here

Alice was here

Both see the 

same outcome 

on their local 

copies
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Causal Consistency
Writes that are potentially causally related must be seen by all 
processes in the same order. Concurrent writes may be seen in a 
different order by different processes.

read

𝑥 → 𝑐

read

𝑥 → 𝑏

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

read

𝑥 → 𝑎

read

𝑥 → 𝑎

read

𝑥 → 𝑎

𝑥:= 𝑏

𝑥 ≔ 𝑐

read

𝑥 → 𝑏

read

𝑥 → 𝑐

read

𝑥 → 𝑏

read

𝑥 → 𝑎

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

read

𝑥 → 𝑎
𝑥:= 𝑏

read

𝑥 → 𝑎

read

𝑥 → 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑎

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

𝑥:= 𝑏

read

𝑥 → 𝑎

read

𝑥 → 𝑏

OK



Causal Consistency
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Append to log:

“Bob was here”

Append to log:

“Alice was here”

Sync Sync

Potential log contents:

Alice was here

Bob was here

Bob was here

Alice was here

They might see 

different 

versions on their 

local copies



Causal Consistency
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1. Read Log and sees

“Alice was here”

Then

2. Append to log:

“Bob was here”

Append to log:

“Alice was here”

Sync Sync

Potential log contents:

Alice was here

Bob was here
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Grouping Operations (1/2)
• Whenever a process wants to acquire exclusive access to a 

synchronization variable, it must first wait for the previous owner to 

send the latest version of the guarded data.

– That means that on entering an exclusive access critical section, the 

acquirer must first get all of the outstanding updates on the data

• To modify a shared variable, you first must acquire exclusive access 

to the relevant synchronization variable.

– This can only happen when there are no other owners of the 
synchronization variable, whether exclusive or non-exclusive

• Before entering a non-exclusive critical section, the enterer must first 

get the most recent copy from the owner of the synchronization 

variable

Basic idea: You don’t care that reads and writes of a series of operations 

are immediately known to other processes. You just want the effect of 

the series itself to be known.
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Grouping Operations (2/2)

Observation: Weak consistency implies that we need to lock and unlock 

data (implicitly or not).

Question: What would be a convenient way of making this consistency 

more or less transparent to programmers?

𝑅𝑒𝑙(𝐿𝑜𝑐𝑘 𝑥 )𝑃1

𝑃2

𝑃3

𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑥 ) 𝑥 ≔ 𝑎 𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑦 ) 𝑦 ≔ 𝑏 𝑅𝑒𝑙(𝐿𝑜𝑐𝑘 𝑦 )

𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑥 ) read

𝑥 → 𝑎

𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑦 )

read

𝑦 → 𝑛

read

𝑦 → 𝑏
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Conclusion

• Logical clocks

– Causally ordered multicast

• Data Oriented Consistency
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