
19 Jan 2025 SE 424: Distributed Systems 1

Causally Ordered Multicast,

Data Oriented Consistency

19 January 2025

Lecture 11

Slide Credits: Maarten van Steen

19 Jan 2025 SE 424: Distributed Systems 2

Topics for Today

• Logical clocks

– Causally ordered multicast

• Data Oriented Consistency

Sources:

• TvS 6.4, 7.1-7.3

19 Jan 2025 SE 424: Distributed Systems 3

Causally Ordered Multicasting

Observation: We can now ensure that a message is

delivered only if all causally preceding messages have

already been delivered.

Adjustment: 𝑃𝑖 increments 𝑉𝐶𝑖[𝑖] only when sending a

message, and 𝑃𝑗 “adjusts” 𝑉𝐶𝑗 when receiving a message

(i.e., effectively does not change 𝑉𝐶𝑗[𝑗]).

𝑃𝑗 postpones delivery of 𝑚 until:

• 𝑡𝑠(𝑚)[𝑖] = 𝑉𝐶𝑗[𝑖] + 1.

• 𝑡𝑠 𝑚 𝑘 ≤ 𝑉𝐶𝑗[𝑘] for 𝑘 ≠ 𝑖

19 Jan 2025 SE 424: Distributed Systems 4

Causally Ordered Multicasting

Example 1:

𝑃0

𝑃1

𝑃2

𝑉𝐶0 = (1,0,0)

𝑚1

𝑉𝐶1 = (1,1,0)

𝑚2

𝑉𝐶0 = (1,1,0)

𝑉𝐶2 = (0,0,0)

Wait!

𝑉𝐶2 = (1,0,0) 𝑉𝐶2 = (1,1,0)

𝑉𝐶1 = (1,0,0)

Causally Ordered Multicasting

Example 2:

Take VC2 = (0,2,2) at 𝑃2

𝑃2 receives a message with 𝑡𝑠(𝑚) = (1,3,0) from 𝑃0.

What information does 𝑃2 have, and what will it do when it

receives 𝑚 (from 𝑃0)?

19 Jan 2025 SE 424: Distributed Systems 5

19 Jan 2025 SE 424: Distributed Systems 6

Causally Ordered Multicast 1

𝑃1 𝑃2

𝑃3

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑚1

𝑚2

𝑚3

delayedwait

19 Jan 2025 SE 424: Distributed Systems 7

Causally Ordered Multicast 2

𝑃1 𝑃2

𝑃3

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 0

𝑃3 1

𝑃1 2

𝑃2 0

𝑃3 1

𝑚1

𝑚2

𝑚3

delayed

19 Jan 2025 SE 424: Distributed Systems 8

Vector Clocks and COM
Vector clocks

Rule 1: Each process has its own
clock and a version of every other
processes’ clock.

Rule 2: Each process increments its
own clock when it sends or
receives a message.

Rule 3: When a process receives a
message from another process it
updates its version of the other
clocks’ timestamps if the received
timestamp is larger

Causally Ordered Multicast

Rule 1: Each process has its own
clock and a version of every other
processes’ clock.

Rule 2: Each process increments its
own clock when it sends a
message.

Rule 3: When a process receives a
message from another process it
updates its version of the sender’s
timestamp.

Rule 4: A message is delivered only if
it is “next in line”:

1. It’s the next expected one for the
sender

2. The message’s timestamp is less
than or equal to the local clock.

19 Jan 2025 SE 424: Distributed Systems 9

So Far

• Logical clocks

– Causally ordered multicast

• Data Oriented Consistency

4 March 2024 SE 424: Distributed Systems 10

Performance and Scalability
Main issue: To keep replicas consistent, we generally need to ensure

that all conflicting operations are done in the same order

everywhere

Conflicting operations: From the world of transactions:

• Read–write conflict: a read operation and a write operation act

concurrently

• Write–write conflict: two concurrent write operations

Guaranteeing global ordering on conflicting operations may be a

costly operation, downgrading scalability

Solution: weaken consistency requirements so that hopefully global

synchronization can be avoided

4 March 2024 SE 424: Distributed Systems 11

Data-Centric Consistency Models

Consistency model: a contract between a (distributed) data store and

processes, in which the data store specifies precisely what the results

of read and write operations are in the presence of concurrency.

Essence: A data store is a distributed collection of storages accessible to

clients:

4 March 2024 SE 424: Distributed Systems 12

Continuous Consistency

Observation: We can actually talk a about a degree of

consistency:

• replicas may differ in their numerical value

– Value may be how many updates are missing

– Weight may be the mathematical distance

• replicas may differ in their relative staleness

• there may be differences with respect to (number and

order) of performed update operations

Conit: consistency unit → specifies the data unit over which

consistency is to be measured.

4 March 2024 SE 424: Distributed Systems 13

Example: Conit Dimensions

Replica

A

Replica

B

x := y * 23602[14,5]

y := y + 13202[12,5]

y := y +22202[8,5]

Commit [0,5]0202[1,5]

Receive [0,5]

from B
0200[0,5]

Init0000[0,0]

yxyx
Event

TentativeCommittedVC

[A,B]

y := y + 55200[0,10]

Send [0,5] to

A
0200[0,6]

x := x+20200[0,5]

Init0000[0,0]

yxyx
Event

TentativeCommittedVC

[A,B]

• Dimension 1: Updates received, not committed: A = 3, B = 2

• Dimension 2: Updates a replica didn’t see: A = 1, B = 3

• Dimension 3: Numerical deviation from missing updates:

• A = 5 (x missing 0, y missing 5), B = 6 (x missing 6, y missing 3)

4 March 2024 SE 424: Distributed Systems 14

Conits
• The granularity of your conit is important

• With a given consistency policy:

– Smaller conits mean you may defer pushing updates

– Bigger conits mans you must push earlier

Example: Do you update a whole table? Each row in the table? Each

entry/cell in the row?

4 March 2024 SE 424: Distributed Systems 15

Sequential Consistency
The result of any execution is the
same as if the operations of all
processes were executed in some
sequential order, and the
operations of each individual
process appear in this sequence in
the order specified by its program.

Note: We’re talking about

interleaved executions: there is

some total ordering for all

operations taken together.

P2,P1

P1,P2

read

𝑥 → 𝑎

read

𝑥 → 𝑎

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

𝑥 ≔ 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑎

read

𝑥 → 𝑏

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

𝑥 ≔ 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑎

Sequential Consistency

4 March 2024 SE 424: Distributed Systems 16

Append to log:

“Bob was here”

Append to log:

“Alice was here”

Sync Sync

Potential log contents:

Alice was here

Bob was here

Bob was here

Alice was here

Both see the

same outcome

on their local

copies

4 March 2024 SE 424: Distributed Systems 17

Causal Consistency
Writes that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in a
different order by different processes.

read

𝑥 → 𝑐

read

𝑥 → 𝑏

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

read

𝑥 → 𝑎

read

𝑥 → 𝑎

read

𝑥 → 𝑎

𝑥:= 𝑏

𝑥 ≔ 𝑐

read

𝑥 → 𝑏

read

𝑥 → 𝑐

read

𝑥 → 𝑏

read

𝑥 → 𝑎

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

read

𝑥 → 𝑎
𝑥:= 𝑏

read

𝑥 → 𝑎

read

𝑥 → 𝑏

read

𝑥 → 𝑏

read

𝑥 → 𝑎

𝑃1

𝑃2

𝑃3

𝑃4

𝑥: = 𝑎

𝑥:= 𝑏

read

𝑥 → 𝑎

read

𝑥 → 𝑏

OK

Causal Consistency

4 March 2024 SE 424: Distributed Systems 18

Append to log:

“Bob was here”

Append to log:

“Alice was here”

Sync Sync

Potential log contents:

Alice was here

Bob was here

Bob was here

Alice was here

They might see

different

versions on their

local copies

Causal Consistency

4 March 2024 SE 424: Distributed Systems 19

1. Read Log and sees

“Alice was here”

Then

2. Append to log:

“Bob was here”

Append to log:

“Alice was here”

Sync Sync

Potential log contents:

Alice was here

Bob was here

4 March 2024 SE 424: Distributed Systems 20

Grouping Operations (1/2)
• Whenever a process wants to acquire exclusive access to a

synchronization variable, it must first wait for the previous owner to

send the latest version of the guarded data.

– That means that on entering an exclusive access critical section, the

acquirer must first get all of the outstanding updates on the data

• To modify a shared variable, you first must acquire exclusive access

to the relevant synchronization variable.

– This can only happen when there are no other owners of the
synchronization variable, whether exclusive or non-exclusive

• Before entering a non-exclusive critical section, the enterer must first

get the most recent copy from the owner of the synchronization

variable

Basic idea: You don’t care that reads and writes of a series of operations

are immediately known to other processes. You just want the effect of

the series itself to be known.

4 March 2024 SE 424: Distributed Systems 21

Grouping Operations (2/2)

Observation: Weak consistency implies that we need to lock and unlock

data (implicitly or not).

Question: What would be a convenient way of making this consistency

more or less transparent to programmers?

𝑅𝑒𝑙(𝐿𝑜𝑐𝑘 𝑥)𝑃1

𝑃2

𝑃3

𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑥) 𝑥 ≔ 𝑎 𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑦) 𝑦 ≔ 𝑏 𝑅𝑒𝑙(𝐿𝑜𝑐𝑘 𝑦)

𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑥) read

𝑥 → 𝑎

𝐴𝑐𝑞(𝐿𝑜𝑐𝑘 𝑦)

read

𝑦 → 𝑛

read

𝑦 → 𝑏

19 Jan 2025 SE 424: Distributed Systems 22

Conclusion

• Logical clocks

– Causally ordered multicast

• Data Oriented Consistency

	Default Section
	Slide 1: Causally Ordered Multicast, Data Oriented Consistency 19 January 2025 Lecture 11
	Slide 2: Topics for Today

	Causally Ordered Multicast
	Slide 3: Causally Ordered Multicasting
	Slide 4: Causally Ordered Multicasting
	Slide 5: Causally Ordered Multicasting
	Slide 6: Causally Ordered Multicast 1
	Slide 7: Causally Ordered Multicast 2
	Slide 8: Vector Clocks and COM

	Data Oriented Consistency
	Slide 9: So Far
	Slide 10: Performance and Scalability
	Slide 11: Data-Centric Consistency Models
	Slide 12: Continuous Consistency
	Slide 13: Example: Conit Dimensions
	Slide 14: Conits
	Slide 15: Sequential Consistency
	Slide 16: Sequential Consistency
	Slide 17: Causal Consistency
	Slide 18: Causal Consistency
	Slide 19: Causal Consistency
	Slide 20: Grouping Operations (1/2)
	Slide 21: Grouping Operations (2/2)
	Slide 22: Conclusion

