Causally Ordered Multicast,
Data Oriented Consistency

19 January 2025
Lecture 11

Slide Credits: Maarten van Steen

19 Jan 2025 SE 424: Distributed Systems

Topics for Today

* Logical clocks
- Causally ordered multicast

« Data Oriented Consistency

Sources:
e TvS6.4,7.1-7.3

19 Jan 2025 SE 424: Distributed Systems

Causally Ordered Multicasting

Observation: We can now ensure that a message is
delivered only if all causally preceding messages have
already been delivered.

Adjustment: P; increments V' C;[i] only when sending a
message, and P; "adjusts” VV'(; when receiving a message

(i.e., effectively does not change V(;[j]).

P; postpones delivery of m until:
e ts(m)[i] =V(Gli] + 1.
o ts(m)lk] < VC(j[k] fork + i

19 Jan 2025 SE 424: Distributed Systems

Causally Ordered Multicasting

Example 1:
VCO — (1,0,0) VCO — (1)1;0)

l...-.-........-.....

: RRLTIY v

e, o

‘ ’ LT o
e, &
T, ¥
bid

.

LMy

- .0
. 0 e,
. 0 .
. N S
s 0 ‘s
B N %,
3
.
. . .,
. K] .
.
s
S
.
)
"
.
H
H
H
H
H
:
:
:
H
:
.
|) :
H
eumEEy
os® e, N
ot ‘e
* ‘e
‘ +* . LN
B . .
. ° . .
. ° . .,
. K3 : N
:
.

V61 = (1, 10)

.
. o A .,
. B . .
. * . *
. o . ‘e
‘¢ * K ‘e
. Q . .
. o A .
L * .,
1 i’ *, 0‘|

Ve, =(0,00) VC,=(100) VC,=(110)

19 Jan 2025 SE 424: Distributed Systems 4

Causally Ordered Multicasting

Example 2:
P, receives a message with ts(m) = (1,3,0) from P,.

What information does P, have, and what will it do when it
receives m (from P,)?

19 Jan 2025 SE 424: Distributed Systems

Causally Ordered Multicast 1

Pl 1 Pl 0 Pl m P
1 2
ANEAL Pil 1] P2
P;|0] P, Oi P2 0[P |0
ANIENE
p.|1]P, |2 —
p20p20 wait
P, (1] P,]1
P, |1
P, 10
Py |1
ms
P, (2]l P |1|] P, P 0]} p,
p,|o|| P, |0]]| P, P, |0
P, (1]l P 1] P, P, |0

p loflp, |1]P, |1
p,lolpr, o] p, |0
p,lo|ps|o] P, |1
P, |2
delayed P, |0
P; |1

w

19 Jan 2025

SE 424: Distributed Systems

Causally Ordered Multicast 2

P |11P,]|0 >
PlePlOP1 S AMEE 2
P; 10| | P50
P, |2]|pP, |2
p,lo|pr,|0
P, lo| P, |1
P, |1
delayed P, 10
Pyl
m;
Py|2|[P 1| P f1][P.]O]{ P,
P, 10l P, |0}l P,|OYlP,]|0
P11l P;|1]|P3s|O0|]P5]0

Pl Pl 1
PZ PZ 2
P3 P3

—_

N

SARCARCE | IR RIS

w

— O [IN]|IOC|O|N

19 Jan 2025

SE 424: Distributed Systems

Vector Clocks and COM

Vector clocks

Rule 1: Each process has its own
clock and a version of every other
processes’ clock.

Rule 2: Each process increments its
own clock when it sends or
receives a message.

Rule 3: When a process receives a
message from another process it
updates its version of the other
clocks’ timestamps if the received
timestamp is larger

Causally Ordered Multicast

Rule 1: Each process has its own
clock and a version of every other
processes’ clock.

Rule 2: Each process increments its
own clock when it sends a
message.

Rule 3: When a process receives a
message from another process it
updates its version of the sender’s
timestamp.

Rule 4: A message is delivered only if
it is “next in line”:

1. It’s the next expected one for the
sender

2. The message’s timestamp is less

than or equal to the local clock.

19 Jan 2025

SE 424: Distributed Systems

So Far

* Logical clocks
- Causally ordered multicast

« Data Oriented Consistency

19 Jan 2025 SE 424: Distributed Systems

Performance and Scalability

Main issue: To keep replicas consistent, we generally need to ensure
that all conflicting operations are done in the same order
everywhere

Conflicting operations: From the world of transactions:

- Read-write conflict: a read operation and a write operation act
concurrently

* Write-write conflict: two concurrent write operations

Guaranteeing global ordering on conflicting operations may be a
costly operation, downgrading scalability

Solution: weaken consistency requirements so that hopefully global
synchronization can be avoided

4 March 2024 SE 424: Distributed Systems 10

Data-Centric Consistency Models

Consistency model: a contract between a (distributed) data store and
processes, in which the data store specifies precisely what the results
of read and write operations are in the presence of concurrency.

Essence: A data store is a distributed collection of storages accessible to
clients:

Process Process Process

t= =3

Distributed data store

Local copy

4 March 2024 SE 424: Distributed Systems 11

Continuous Consistency

Observation: We can actually talk a about a degree of
consistency:

 replicas may differ in their numerical value
- Value may be how many updates are missing
- Weight may be the mathematical distance

 replicas may differ in their relative staleness

 there may be differences with respect to (humber and
order) of performed update operations

Conit: consistency unit - specifies the data unit over which
consistency is to be measured.

4 March 2024 SE 424: Distributed Systems 12

Example: Conit Dimensions

Replica Replica
A B

VC Committed Tentative VC Committed Tentative
Event Event

[AB] | «x y X y [AB] | x y X y

[0,0] 0 0 0 0 Init [0,0] 0 0 0 0 Init
[0,5] 0 0 5 0 Rec;re(;\r/r? IFD’O,S] \ [0,5] 0 0 2 0 X = X+2

[0,6] 0 0 5 0 Send [0,5] to

[1,5] 2 0 2 0 Commit [0,5] ’ A

[8,5] 2 0 2 2 y =y +2 [0,10] 0 0 2 5 y=y+5
[12,5] 2 0 2 3 y=y+1
[14,5] 2 0 6 3 X =y*2

« Dimension 1: Updates received, not committed: A=3,B=2
« Dimension 2: Updates a replica didn’t see: A=1,B =3
« Dimension 3: Numerical deviation from missing updates:
« A=5 (xmissing 0, y missing 5), B =6 (x missing 6, y missing 3)

4 March 2024 SE 424: Distributed Systems 13

Conits

« The granularity of your conit is important
« With a given consistency policy:

- Smaller conits mean you may defer pushing updates
- Bigger conits mans you must push earlier

Example: Do you update a whole table? Each row in the table? Each
entry/cell in the row?

Conit Data item
\

Update A /P = : Update *' — :—"”" S e > | I
. | rop()jagate M Sy o | Postpone | \=—— i

: Higdios i update
Update | | : Update | «————--- | propagation | ====-" ;
—— e} — S
Replica 1 Replica 2 Replica 1 Replica 2

(@) (b)

4 March 2024 SE 424: Distributed Systems 14

Sequential Consistency

The result of any execution is the P xi=a
same as If the operations of all P, x=b
processes were executed in some P, ead ead
sequential order, and the x—b x—a
operations of each Individual P, read read
process appear in this sequence in x>b x-a
the order specified by its program. _ W
27 1
Note: We're talking about P, x-a
interleaved executions: there is —
some total ordering for all " b
operations taken together. Ps read read.
P, read read
xX—>a x-b
I:)11|:)2

4 March 2024 SE 424: Distributed Systems

15

Sequential Consistency

- @)
I N
Append to log: l Append to log: l
“Bob was here’ “Alice was here”

- -

! !

@ Sync @ Sync @

Potential log contents: Both see the
Alice was here Bob was here 1 same Qutcome
Bob was here Alice was here on t_helr local

copies

4 March 2024 SE 424: Distributed Systems 16

Causal Consistency

Whites that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in a

different order by different processes. ¥
P1 =a
P, read x:=0b
P, xi=a = X > a
P, read x:=0b Py read read
xX—a xX->b x-a
Py read read read P, read read
xX—a xX=>c x-0b xX—>a x-b
P, read read read
X —a x—->b x-c Py, xi=a
/ P2 X:= b
O K Py read read
xX—=>b x-a
P, read read
xX—=>a x-b
4 March 2024 SE 424: Distributed Systems 17

Causal Consistency

- @)
I N
Append to log: l Append to log: l
“Bob was here’ “Alice was here”

- -

! !

@ Sync @ Sync @

Potential log contents: They might see

Alice was here Bob was here | ¢umm different |

Bob was here Alice was here versions on their
local copies

4 March 2024 SE 424: Distributed Systems 18

Causal Consistency

- @
| =
1. Read Log and sees l Append to log: l
“Alice was here” “Alice was here”

- 8

2. Append to log:
“Bob was here”

Potential log contents:

Alice was here : :
Bob was here @ Sync @ Sync @

4 March 2024 SE 424: Distributed Systems 19

Grouping Operations (1/2)

 Whenever a process wants to acquire exclusive access to a
synchronization variable, it must first wait for the previous owner to
send the latest version of the guarded data.

- That means that on entering an exclusive access critical section, the
acquirer must first get all of the outstanding updates on the data

 To modify a shared variable, you first must acquire exclusive access
to the relevant synchronization variable.

- This can only happen when there are no other owners of the
synchronization variable, whether exclusive or non-exclusive

« Before entering a non-exclusive critical section, the enterer must first

get the most recent copy from the owner of the synchronization
variable

Basic idea: You don’t care that reads and writes of a series of operations
are immediately known to other processes. You just want the effect of
the series itself to be known.

4 March 2024 SE 424: Distributed Systems 20

Grouping Operations (2/2)

P, Acq(Lock(x)) x:=a Acq(Lock(y)) y:=b Rel(Lock(x)) Rel(Lock(y))

P, Acq(Lock(x)) read read
X - a y—-n

P Acq(Lock(y)) read
y—b

Observation: Weak consistency implies that we need to lock and unlock
data (implicitly or not).

Question: What would be a convenient way of making this consistency
more or less transparent to programmers?

4 March 2024 SE 424: Distributed Systems 21

Conclusion

* Logical clocks
- Causally ordered multicast

« Data Oriented Consistency

19 Jan 2025 SE 424: Distributed Systems

22

	Default Section
	Slide 1: Causally Ordered Multicast, Data Oriented Consistency 19 January 2025 Lecture 11
	Slide 2: Topics for Today

	Causally Ordered Multicast
	Slide 3: Causally Ordered Multicasting
	Slide 4: Causally Ordered Multicasting
	Slide 5: Causally Ordered Multicasting
	Slide 6: Causally Ordered Multicast 1
	Slide 7: Causally Ordered Multicast 2
	Slide 8: Vector Clocks and COM

	Data Oriented Consistency
	Slide 9: So Far
	Slide 10: Performance and Scalability
	Slide 11: Data-Centric Consistency Models
	Slide 12: Continuous Consistency
	Slide 13: Example: Conit Dimensions
	Slide 14: Conits
	Slide 15: Sequential Consistency
	Slide 16: Sequential Consistency
	Slide 17: Causal Consistency
	Slide 18: Causal Consistency
	Slide 19: Causal Consistency
	Slide 20: Grouping Operations (1/2)
	Slide 21: Grouping Operations (2/2)
	Slide 22: Conclusion

