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Topics for Today

* Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks

Source: TvS 6.2-6.4
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The Happened-Before Relationship

Problem: We first need to introduce a notion of order in
before we can order anything.

The happened-before relation on the set of events in a
distributed system:

* If a and b are two events in the same process, and a
comes before b, then a — b.

« If ais the sending of a message, and b is the receipt of
that message, thena - b

e fa->bandb - c,thena —» ¢

Note: this introduces a partial ordering of events in a system
with concurrently operating processes.
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Logical Clocks (1/2)

Problem: How do we maintain a global view on the system’s behavior
that is consistent with the happened-before relation?

Solution: attach a timestamp C(e) to each event e, satisfying the
following properties:

P1: If a and b are two events in the same process, and a — b, then we
demand that C(a) < C(b).

P2: If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem: How to attach a timestamp to an event when there’s no global
clock - maintain a consistent set of logical clocks, one per process
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Logical Clocks (2/2)

Solution

Each process P; maintains a local counter C; and adjusts this counter
according to the following rules:

1: For any two successive events that take place within P;, C; is

incremented by 1.

2: Each time a message m is sent by process P;, the message receives a
timestamp ts(m) = C;.

3: Whenever a message m is received by a process P;, P; adjusts its
local counter C; to max{C;, ts(m)}; then executes step 1 before
passing m to the application.

Property P1 is satisfied by (1);
Property P2 by (2) and (3).
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Note

It is still possible for two events to
happen at the same time. Avoid this by
breaking ties through process IDs.
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Logical Clocks - Example

No Clock Adjustment Clock Adjustment
P P, P; Py P, Py
0 0 0 0 0 0
6 m 8 10 6 m 8 10
12 \ 16 20 12 \ 16 20
18 24 % 30 18 24 % 30
24 32 40 24 32 40
30 40 50 30 40 50

60 36 48| m, 60
70 42 61 / 70
80 48 m/ 69 80
90 70 77 90
100 76 85 100
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Logical Clocks - Example

P, P Py P, P Ps
0 0 0 0 0 0
6 my 8 10 6 my 8 10
Tl [ o] [z
18 24|__m, |30 ig 24 m, [30
7y @ o 2 @ o
30 40 50 30| P2 adjusts | 40 50
36 48 60 36| its clock |48 60
........................ ~— ) - e
a2 56 M5 |70 a2 Gif ™s |70
48 64 80 »48_ 69 80
54, |72 % Gor— ™ |77 %0
60 80 100 76 P; adjusts 85 100
its clock
(a) (b)

Note: Adjustments take place in the middleware layer:

Application layer

_ Adjust local clock Adjust local clock Middleware layer
and timestamp message

Middleware sends message Message is received

Network layer
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So Far

« Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks
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Example: Totally Ordered Multicast (1/2)

Problem: We sometimes need to guarantee that concurrent updates on a
replicated database are seen in the same order everywhere:

e P, adds $100 to an account (initial value: $1000)
e P, increments account by 1%
 There are two replicas

% Updatet Update 2 %

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Result: in absence of proper synchronization:
replica #1 €< $1111, while replica #2 < $1110.
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Example: Totally Ordered Multicast (2/2)

Solution:

* Process P; sends timestamped message msg; to all others. The
message itself is put in a local queue queue,;.

* Any incoming message at P; is queued in queue;, according to its
timestamp, and acknowledged to every other process.

P; passes a message msg; to its application if:
(1) msg; is at the head of queue;

(2) for each process Py, there is a message msgy, in queue; with a larger
timestamp.

Note: We are assuming that communication is reliable and FIFO ordered
(i.e. messages from a single sender arrive in the order sent)
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TOM lllustrated

LC:0 LC:0

LC:0 LC:0
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TOM lllustrated 2

LC:1 \

MAl:l

1\'4A1:1 MA1:1

LC:?2 LC:?2
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TOM lllustrated 3
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TOM lllustrated 4
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TOM lllustrated 5
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TOM lllustrated 6
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TOM lllustrated 7
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TOM lllustrated 8
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TOM lllustrated 9
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TOM with ACKs

* For systems with slower message sending, we can use
ACKs to make TOM work better
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TOM ACKSs lllustrated
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TOM ACKSs lllustrated 2
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TOM ACKSs lllustrated 3
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TOM ACKSs lllustrated 4
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TOM ACKSs lllustrated 5
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TOM ACKs lllustrated 6
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TOM ACKSs lllustrated 7/
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TOM ACKSs lllustrated 8
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TOM ACKSs lllustrated 9
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TOM ACKSs lllustrated 10
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TOM ACKSs lllustrated 11
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TOM ACKSs lllustrated 12
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TOM ACKSs lllustrated 12
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TOM ACKSs lllustrated 13
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So Far

* Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks
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Vector Clocks

Observation: Lamport’s clocks do not guarantee that if C(a) < C(b) that a
causally preceded b:

P, P, P,
__0 0 0
el m 5
i3] {is| M %6
i i )
54 32| my |40
30 4| 50
36 48 60
"""" T Pl
4 60 e |70
48 69 80
(7ol ™5 |77 %0
76 85 100

Observation:
Eventa: m,isreceivedatT = 16.
Event b: m,issentatT = 20.

We cannot conclude that a causally precedes b.
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Vector Clocks

Solution:

« [Each process P; has an array VVC;[1..n], where V (;[j] denotes the
number of events that process P; knows have taken place at process
Py

« When P; sends a message m, it adds 1 to V(;[i], and sends V (C; along
with m as vector timestamp vt(m). Result: upon arrival, recipient

knows P;’s timestamp.
- When a process P; delivers a message m that it received from P; with
vector timestamp ts(m), it
1) updates each V(; [k] to max{V(;[k], ts(m)[k]} for each k
2) increments V(;[j] by 1.

Question: What does V' C;[j] = k mean in terms of messages sent and
received?
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Vector and Lamport Clocks

Lamport Clocks Vector clocks

Rule 1: Each process has its own Rule 1: Each process has its own
version of the global clock clock and a version of every
other processes’ clock.

Rule 2: Each process increments
its global clock version when it Rule 2: Each process increments
performs an internal event or its own clock when it sends or
sends a message (which receives a message.
includes a timestamp)

Rule 3: When a process receives a

Rule 3: When a process receives a message from another process
message from another process it updates its version of the
it updates its global clock other clocks’ timestamps if the
version if the received received timestamp is larger

timestamp is larger.
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Vector Clock Example

P, 111 P |0 P, P, Py Py Py |2
PZ O P2 O Pl 2 / PZ PZ PZ 2
P3 0 P3 Oi my PZ 0 P3 P3 P3 2
P1 2 P1 3 Pl 1 P3 O f/l 2 Pl 2
PZ O P2 3 PZ O PZ 3 P2 3
P3 0 P3 4 P3 0 P3 2 P3 2
P |1

p, |2 Py |2 1

P, |3 P2 10
P, |3 2

P, |4 Ps |2
P3 4 3 msg ms
P]_ 2 P]_ 1 P]_ 1 P]_ O P3
P2 3 Pz 0 Pz 0 P2 0
P3 3 P3 2 P3 1 P3 0
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Vector Clock Example

NEAE p, [2 1. m;<m,
1 2. my <my
3. my<my

Ps |0 Ps |2 4 m; < m:

Py |2 Py (2 5 m, <>my

P, |0 " | Py |3 6. m, <m,

P; 10 P3 14 7. m, < Ms

P |1 8 my<m,

m, | P |0 9. m; <me
Ps |2 10.m, < mq
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Conclusion

* Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks
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