Lamport Logical Clocks,
Totally Ordered Multicast,
Vector Clocks

12 January 2025
Lecture 10

Slide Credits: Maarten van Steen

12 Jan 2025 SE 424: Distributed Systems

Topics for Today

* Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks

Source: TvS 6.2-6.4

12 Jan 2025 SE 424: Distributed Systems

The Happened-Before Relationship

Problem: We first need to introduce a notion of order in
before we can order anything.

The happened-before relation on the set of events in a
distributed system:

* If a and b are two events in the same process, and a
comes before b, then a — b.

« If ais the sending of a message, and b is the receipt of
that message, thena - b

e fa->bandb - c,thena —» ¢

Note: this introduces a partial ordering of events in a system
with concurrently operating processes.

12 Jan 2025 SE 424: Distributed Systems

Logical Clocks (1/2)

Problem: How do we maintain a global view on the system’s behavior
that is consistent with the happened-before relation?

Solution: attach a timestamp C(e) to each event e, satisfying the
following properties:

P1: If a and b are two events in the same process, and a — b, then we
demand that C(a) < C(b).

P2: If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem: How to attach a timestamp to an event when there’s no global
clock - maintain a consistent set of logical clocks, one per process

12 Jan 2025 SE 424: Distributed Systems 4

Logical Clocks (2/2)

Solution

Each process P; maintains a local counter C; and adjusts this counter
according to the following rules:

1: For any two successive events that take place within P;, C; is

incremented by 1.

2: Each time a message m is sent by process P;, the message receives a
timestamp ts(m) = C;.

3: Whenever a message m is received by a process P;, P; adjusts its
local counter C; to max{C;, ts(m)}; then executes step 1 before
passing m to the application.

Property P1 is satisfied by (1);
Property P2 by (2) and (3).

12 Jan 2025 SE 424: Distributed Systems 5

Note

It is still possible for two events to
happen at the same time. Avoid this by
breaking ties through process IDs.

12 Jan 2025 SE 424: Distributed Systems 6

Logical Clocks - Example

No Clock Adjustment Clock Adjustment
P P, P; Py P, Py
0 0 0 0 0 0
6 m 8 10 6 m 8 10
12 \ 16 20 12 \ 16 20
18 24 % 30 18 24 % 30
24 32 40 24 32 40
30 40 50 30 40 50

60 36 48| m, 60
70 42 61 / 70
80 48 m/ 69 80
90 70 77 90
100 76 85 100

12 Jan 2025

SE 424: Distributed Systems

Logical Clocks - Example

P, P Py P, P Ps
0 0 0 0 0 0
6 my 8 10 6 my 8 10
Tl [o] [z
18 24|__m, |30 ig 24 m, [30
7y @ o 2 @ o
30 40 50 30| P2 adjusts | 40 50
36 48 60 36| its clock |48 60
........................ ~—) - e
a2 56 M5 |70 a2 Gif ™s |70
48 64 80 »48_ 69 80
54, |72 % Gor— ™ |77 %0
60 80 100 76 P; adjusts 85 100
its clock
(a) (b)

Note: Adjustments take place in the middleware layer:

Application layer

_ Adjust local clock Adjust local clock Middleware layer
and timestamp message

Middleware sends message Message is received

Network layer

12 Jan 2025 SE 424: Distributed Systems

So Far

« Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks

12 Jan 2025 SE 424: Distributed Systems

Example: Totally Ordered Multicast (1/2)

Problem: We sometimes need to guarantee that concurrent updates on a
replicated database are seen in the same order everywhere:

e P, adds $100 to an account (initial value: $1000)
e P, increments account by 1%
 There are two replicas

% Updatet Update 2 %

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Result: in absence of proper synchronization:
replica #1 €< $1111, while replica #2 < $1110.

12 Jan 2025 SE 424: Distributed Systems 10

Example: Totally Ordered Multicast (2/2)

Solution:

* Process P; sends timestamped message msg; to all others. The
message itself is put in a local queue queue,;.

* Any incoming message at P; is queued in queue;, according to its
timestamp, and acknowledged to every other process.

P; passes a message msg; to its application if:
(1) msg; is at the head of queue;

(2) for each process Py, there is a message msgy, in queue; with a larger
timestamp.

Note: We are assuming that communication is reliable and FIFO ordered
(i.e. messages from a single sender arrive in the order sent)

12 Jan 2025 SE 424: Distributed Systems 11

TOM lllustrated

LC:0 LC:0

LC:0 LC:0

12 Jan 2025 SE 424: Distributed Systems 12

TOM lllustrated 2

LC:1 \

MAl:l

1\'4A1:1 MA1:1

LC:?2 LC:?2

12 Jan 2025 SE 424: Distributed Systems 13
MAl: 1 y MAl: 1

TOM lllustrated 3

12 Jan 2025

MBZ: 3
MA1:1

SE 424: Distributed Systems

LC:4

MBZ: 3
MA1:1

14

TOM lllustrated 4

LC:6

Mc3:5
MBZ: 3
MA1:1

12 Jan 2025

LC:6

Mc3:5
MBZ: 3
MA1:1

SE 424: Distributed Systems

M5 — I

LC:6

Mcg:s
MBZ: 3
MA1:1

LC:5

Mc3:5
MBZ:3
MA1:1

15

TOM lllustrated 5

12 Jan 2025

LC:8

Mpy:7
Mc3: 5
Mg,: 3
Myq:1

SE 424: Distributed Systems

LC:7

Mpy:7
Mc3:5
Mpg,: 3
Myq:1

16

TOM lllustrated 6

LC:8

Mpy:7
Mc3: 5
Mg,: 3
Mo

l

Commit
MAl: 1

12 Jan 2025

LC:8

MD4-:7
Mc3:5

MBZ: 3 /

Mt

Commit Commit
Myy:1 My, 1

SE 424: Distributed Systems

\

LC:7

Mpy:7
Mc3:5
Mpg,: 3
Mprt

LC:8

Mpy:7
Me3: 5
Mg,: 3
M

)

Commit
MAl: 1

17

TOM lllustrated 7

LC:9

Mys: 9
Mpy:7
Mc3: 5
Mg,: 3

12 Jan 2025

T

MA5:9

LC:10

Mys: 9
Mpy:7
Mc3: 5
Mg,: 3

Mt

SE 424: Distributed Systems

LC:9
Mqe: 9
€6 MC6:9
MD4:7
Mc3:5
MBZ:3
Mot
LC:10
MC6:9
MD4:7
Mcg:s
MBZ: 3
18
M1

TOM lllustrated 8

LC:9 \

Mys: 9
Mpy:7
Mc3: 5
Mgz3

Commit
MBZ . 3

12 Jan 2025

MA5:9

LC:10

Commit
MBZ: 3

MC6: 9

LC:10

MC6:9
MD4:7
Mcg:s

SE 424: Distributed Systems

MBZ: 3

LC:9

Mcg:9
Mpy:7
Me3: 5
Mg,: 3

19

TOM lllustrated 9

12 Jan 2025

LC:11
Mcg: 9
Mys: 9
Mpy:7
Mc3: 5

LC:11

Commit
MBZ: 3

SE 424: Distributed Systems

Commit
MBZ: 3

20

TOM with ACKs

* For systems with slower message sending, we can use
ACKs to make TOM work better

12 Jan 2025 SE 424: Distributed Systems

21

TOM ACKSs lllustrated

LC:0 LC:0

LC:0 LC:0

12 Jan 2025 SE 424: Distributed Systems 22

TOM ACKSs lllustrated 2

LC:?2 LC:?2

12 Jan 2025 SE 424: Distributed Systems 23
MAl: 1 y MAl: 1

TOM ACKSs lllustrated 3

LC:1 LC:2

ACK M,;

1\'4A1:1 / MA1:1

LC:?2 LC:?2

12 Jan 2025 SE 424: Distributed Systems 24
MAl: 1 y MAl: 1

TOM ACKSs lllustrated 4

LC:1 LC:2
ACK M,
MAl: " / v\“ MAl: :
LC:2 LC:2
12 Jan 2025 SE 424: Distributed Systems 25

MAl:l MA1:1

TOM ACKSs lllustrated 5

1\'4A1:1 MA1:1

LC:?2 LC:?2

12 Jan 2025 SE 424: Distributed Systems 26
MAl: 1 y MAl: 1

TOM ACKs lllustrated 6

|

Commit
MAl: 1

Commit
MAl: 1

12 Jan 2025

LC:?2

Mt

SE 424: Distributed Systems

LC:?2

Mprt

y

Commit
MAl: 1

Commit

/‘ Myq: 1

27

TOM ACKSs lllustrated 7/

LC:3 LC:4

Mp,: 3 Mpg,: 3
12 Jan 2025 SE 424: Distributed Systems 28

Mprt

TOM ACKSs lllustrated 8

LC: 4 \ LC: 4
ACK M

MBZ: 3 MBZ: 3
o En "o [
LC:3 LC:4
Mp,: 3 Mpg,: 3
12 Jan 2025 SE 424: Distributed Systems 29

TOM ACKSs lllustrated 9

LC:3 LC:4

Mp,: 3 Mpg,: 3
12 Jan 2025 SE 424: Distributed Systems 30

TOM ACKSs lllustrated 10

LC:4 LC:4
ACK M;,
MBZ: 3 \ MBZ: 3
LC:3 LC:4
Mp,: 3 Mpg,: 3
12 Jan 2025 SE 424: Distributed Systems 31

TOM ACKSs lllustrated 11

LC:4

Mpr3
Myt

!

Commit
MB2 . 3

Commit
MBZ: 3

12 Jan 2025

LC:3

Mpr-3
Mt

SE 424: Distributed Systems

LC:4

Mp3
Mprt

LC:4

Mgz3

-}-\471:1_—};

Commit
MBZ: 3

Commit

/‘ Mpg,: 3

32

TOM ACKSs lllustrated 12

Mys:9 Mge: 9
Mys: 9 Mcg:9
Moz Moz
Mez5 M5
Mpr3 Mpr3
LC:10 LC:10
Mys: 9 Mce: 9
12 Jan 2025 Mot SE 424: Distributed Systems Mot 33

TOM ACKSs lllustrated 12

Mys: 9 Mce: 9
12 Jan 2025 Mot SE 424: Distributed Systems Mot 34

TOM ACKSs lllustrated 13

LC:11 LC:11
Mcg: 9 Mcg:9
Mys: 9 < Mys: 9
12 Jan 2025 Mot SE 424: Distributed Systems Mot 35

So Far

* Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks

12 Jan 2025 SE 424: Distributed Systems

36

Vector Clocks

Observation: Lamport’s clocks do not guarantee that if C(a) < C(b) that a
causally preceded b:

P, P, P,
__0 0 0
el m 5
i3] {is| M %6
i i)
54 32| my |40
30 4| 50
36 48 60
"""" T Pl
4 60 e |70
48 69 80
(7ol ™5 |77 %0
76 85 100

Observation:
Eventa: m,isreceivedatT = 16.
Event b: m,issentatT = 20.

We cannot conclude that a causally precedes b.

12 Jan 2025 SE 424: Distributed Systems 37

Vector Clocks

Solution:

« [Each process P; has an array VVC;[1..n], where V (;[j] denotes the
number of events that process P; knows have taken place at process
Py

« When P; sends a message m, it adds 1 to V(;[i], and sends V (C; along
with m as vector timestamp vt(m). Result: upon arrival, recipient

knows P;’s timestamp.
- When a process P; delivers a message m that it received from P; with
vector timestamp ts(m), it
1) updates each V(; [k] to max{V(;[k], ts(m)[k]} for each k
2) increments V(;[j] by 1.

Question: What does V' C;[j] = k mean in terms of messages sent and
received?

12 Jan 2025 SE 424: Distributed Systems 38

Vector and Lamport Clocks

Lamport Clocks Vector clocks

Rule 1: Each process has its own Rule 1: Each process has its own
version of the global clock clock and a version of every
other processes’ clock.

Rule 2: Each process increments
its global clock version when it Rule 2: Each process increments
performs an internal event or its own clock when it sends or
sends a message (which receives a message.
includes a timestamp)

Rule 3: When a process receives a

Rule 3: When a process receives a message from another process
message from another process it updates its version of the
it updates its global clock other clocks’ timestamps if the
version if the received received timestamp is larger

timestamp is larger.

12 Jan 2025 SE 424: Distributed Systems 39

Vector Clock Example

P, 111 P |0 P, P, Py Py Py |2
PZ O P2 O Pl 2 / PZ PZ PZ 2
P3 0 P3 Oi my PZ 0 P3 P3 P3 2
P1 2 P1 3 Pl 1 P3 O f/l 2 Pl 2
PZ O P2 3 PZ O PZ 3 P2 3
P3 0 P3 4 P3 0 P3 2 P3 2
P |1

p, |2 Py |2 1

P, |3 P2 10
P, |3 2

P, |4 Ps |2
P3 4 3 msg ms
P]_ 2 P]_ 1 P]_ 1 P]_ O P3
P2 3 Pz 0 Pz 0 P2 0
P3 3 P3 2 P3 1 P3 0

12 Jan 2025 SE 424: Distributed Systems

40

Vector Clock Example

NEAE p, [2 1. m;<m,
1 2. my <my
3. my<my

Ps |0 Ps |2 4 m; < m:

Py |2 Py (2 5 m, <>my

P, |0 " | Py |3 6. m, <m,

P; 10 P3 14 7. m, < Ms

P |1 8 my<m,

m, | P |0 9. m; <me
Ps |2 10.m, < mq

12 Jan 2025 SE 424: Distributed Systems

41

Conclusion

* Logical Clocks
- Lamport
- Totally Ordered Multicast

* (Mattern) Vector Clocks

12 Jan 2025 SE 424: Distributed Systems

42

	Default Section
	Slide 1: Lamport Logical Clocks, Totally Ordered Multicast, Vector Clocks 12 January 2025 Lecture 10
	Slide 2: Topics for Today

	Logical Clock
	Slide 3: The Happened-Before Relationship
	Slide 4: Logical Clocks (1/2)
	Slide 5: Logical Clocks (2/2)
	Slide 6: Note
	Slide 7: Logical Clocks - Example
	Slide 8: Logical Clocks – Example

	Totally Ordered Multicast
	Slide 9: So Far
	Slide 10: Example: Totally Ordered Multicast (1/2)
	Slide 11: Example: Totally Ordered Multicast (2/2)
	Slide 12: TOM Illustrated 1
	Slide 13: TOM Illustrated 2
	Slide 14: TOM Illustrated 3
	Slide 15: TOM Illustrated 4
	Slide 16: TOM Illustrated 5
	Slide 17: TOM Illustrated 6
	Slide 18: TOM Illustrated 7
	Slide 19: TOM Illustrated 8
	Slide 20: TOM Illustrated 9
	Slide 21: TOM with ACKs
	Slide 22: TOM ACKs Illustrated 1
	Slide 23: TOM ACKs Illustrated 2
	Slide 24: TOM ACKs Illustrated 3
	Slide 25: TOM ACKs Illustrated 4
	Slide 26: TOM ACKs Illustrated 5
	Slide 27: TOM ACKs Illustrated 6
	Slide 28: TOM ACKs Illustrated 7
	Slide 29: TOM ACKs Illustrated 8
	Slide 30: TOM ACKs Illustrated 9
	Slide 31: TOM ACKs Illustrated 10
	Slide 32: TOM ACKs Illustrated 11
	Slide 33: TOM ACKs Illustrated 12
	Slide 34: TOM ACKs Illustrated 12
	Slide 35: TOM ACKs Illustrated 13

	Vector Clocks
	Slide 36: So Far
	Slide 37: Vector Clocks
	Slide 38: Vector Clocks
	Slide 39: Vector and Lamport Clocks
	Slide 40: Vector Clock Example
	Slide 41: Vector Clock Example
	Slide 42: Conclusion

