
Lamport Logical Clocks,

Totally Ordered Multicast,

Vector Clocks

12 January 2025

Lecture 10

12 Jan 2025 SE 424: Distributed Systems 1

Slide Credits: Maarten van Steen

Topics for Today

• Logical Clocks

– Lamport

– Totally Ordered Multicast

• (Mattern) Vector Clocks

Source: TvS 6.2-6.4

12 Jan 2025 SE 424: Distributed Systems 2

12 Jan 2025 SE 424: Distributed Systems 3

The Happened-Before Relationship

Problem: We first need to introduce a notion of order in

before we can order anything.

The happened-before relation on the set of events in a

distributed system:

• If 𝑎 and 𝑏 are two events in the same process, and a
comes before 𝑏, then a → 𝑏.

• If a is the sending of a message, and 𝑏 is the receipt of

that message, then 𝑎 → 𝑏

• If 𝑎 → 𝑏 and 𝑏 → 𝑐, then 𝑎 → 𝑐

Note: this introduces a partial ordering of events in a system

with concurrently operating processes.

12 Jan 2025 SE 424: Distributed Systems 4

Logical Clocks (1/2)
Problem: How do we maintain a global view on the system’s behavior

that is consistent with the happened-before relation?

Solution: attach a timestamp 𝐶(𝑒) to each event 𝑒, satisfying the

following properties:

P1: If 𝑎 and 𝑏 are two events in the same process, and 𝑎 → 𝑏, then we

demand that 𝐶 𝑎 < 𝐶(𝑏).

P2: If 𝑎 corresponds to sending a message 𝑚, and 𝑏 to the receipt of that

message, then also 𝐶 𝑎 < 𝐶(𝑏).

Problem: How to attach a timestamp to an event when there’s no global

clock → maintain a consistent set of logical clocks, one per process

12 Jan 2025 SE 424: Distributed Systems 5

Logical Clocks (2/2)
Solution

Each process 𝑃𝑖 maintains a local counter 𝐶𝑖 and adjusts this counter

according to the following rules:

1: For any two successive events that take place within 𝑃𝑖, 𝐶𝑖 is

incremented by 1.

2: Each time a message 𝑚 is sent by process 𝑃𝑖, the message receives a

timestamp 𝑡𝑠 𝑚 = 𝐶𝑖.

3: Whenever a message 𝑚 is received by a process 𝑃𝑗, 𝑃𝑗 adjusts its

local counter 𝐶𝑗 to max{𝐶𝑗 , 𝑡𝑠 𝑚 }; then executes step 1 before

passing 𝑚 to the application.

Property P1 is satisfied by (1);

Property P2 by (2) and (3).

12 Jan 2025 SE 424: Distributed Systems 6

Note

It is still possible for two events to

happen at the same time. Avoid this by

breaking ties through process IDs.

Logical Clocks - Example

12 Jan 2025 SE 424: Distributed Systems 7

Clock AdjustmentNo Clock Adjustment

0

6

12

18

24

30

36

42

48

54

60

𝑃1

0

8

16

24

32

40

48

56

64

72

80

𝑃2

0

10

20

30

40

50

60

70

80

90

100

𝑃3

𝑚1

𝑚2

𝑚4

𝑚3

0

6

12

18

24

30

36

42

48

70

76

𝑃1

0

8

16

24

32

40

48

61

69

77

85

𝑃2

0

10

20

30

40

50

60

70

80

90

100

𝑃3

𝑚1

𝑚2

𝑚4

𝑚3

12 Jan 2025 SE 424: Distributed Systems 8

Logical Clocks – Example

Note: Adjustments take place in the middleware layer:

So Far

• Logical Clocks

– Lamport

– Totally Ordered Multicast

• (Mattern) Vector Clocks

12 Jan 2025 SE 424: Distributed Systems 9

12 Jan 2025 SE 424: Distributed Systems 10

Example: Totally Ordered Multicast (1/2)

Problem: We sometimes need to guarantee that concurrent updates on a

replicated database are seen in the same order everywhere:

• 𝑃1 adds $100 to an account (initial value: $1000)

• 𝑃2 increments account by 1%

• There are two replicas

Result: in absence of proper synchronization:

replica #1  $1111, while replica #2  $1110.

12 Jan 2025 SE 424: Distributed Systems 11

Example: Totally Ordered Multicast (2/2)

Solution:

• Process 𝑃𝑖 sends timestamped message 𝑚𝑠𝑔𝑖 to all others. The

message itself is put in a local queue 𝑞𝑢𝑒𝑢𝑒𝑖.

• Any incoming message at 𝑃𝑗 is queued in 𝑞𝑢𝑒𝑢𝑒𝑗, according to its

timestamp, and acknowledged to every other process.

𝑃𝑗 passes a message 𝑚𝑠𝑔𝑖 to its application if:

(1) 𝑚𝑠𝑔𝑖 is at the head of 𝑞𝑢𝑒𝑢𝑒𝑗

(2) for each process 𝑃𝑘, there is a message 𝑚𝑠𝑔𝑘 in 𝑞𝑢𝑒𝑢𝑒𝑗 with a larger

timestamp.

Note: We are assuming that communication is reliable and FIFO ordered

(i.e. messages from a single sender arrive in the order sent)

TOM Illustrated 1

12 Jan 2025 SE 424: Distributed Systems 12

A

𝐿𝐶: 0

C

𝐿𝐶: 0

B

𝐿𝐶: 0

D

𝐿𝐶: 0

TOM Illustrated 2

12 Jan 2025 SE 424: Distributed Systems 13

A

𝐿𝐶: 1

𝑀𝐴1: 1

C

𝐿𝐶: 2

𝑀𝐴1: 1

B

𝐿𝐶: 2

𝑀𝐴1: 1

D

𝐿𝐶: 2

𝑀𝐴1: 1

𝑀𝐴1: 1

TOM Illustrated 3

12 Jan 2025 SE 424: Distributed Systems 14

A

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 3

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐵2: 3

TOM Illustrated 4

12 Jan 2025 SE 424: Distributed Systems 15

A

𝐿𝐶: 6

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 5

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 6

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 6

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐶3: 5

TOM Illustrated 5

12 Jan 2025 SE 424: Distributed Systems 16

A

𝐿𝐶: 8

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 8

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 8

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 7

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐷4: 7

TOM Illustrated 6

12 Jan 2025 SE 424: Distributed Systems 17

A

𝐿𝐶: 8

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 8

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 8

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 7

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

TOM Illustrated 7

12 Jan 2025 SE 424: Distributed Systems 18

A

𝐿𝐶: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 9

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 10

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐴5: 9 𝑀𝐶6: 9

TOM Illustrated 8

12 Jan 2025 SE 424: Distributed Systems 19

A

𝐿𝐶: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 9

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 10

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐴5: 9 𝑀𝐶6: 9

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

TOM Illustrated 9

12 Jan 2025 SE 424: Distributed Systems 20

A

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 11

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 11

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐴5: 9 𝑀𝐶6: 9

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

TOM with ACKs

• For systems with slower message sending, we can use

ACKs to make TOM work better

12 Jan 2025 SE 424: Distributed Systems 21

TOM ACKs Illustrated 1

12 Jan 2025 SE 424: Distributed Systems 22

A

𝐿𝐶: 0

C

𝐿𝐶: 0

B

𝐿𝐶: 0

D

𝐿𝐶: 0

TOM ACKs Illustrated 2

12 Jan 2025 SE 424: Distributed Systems 23

A

𝐿𝐶: 1

𝑀𝐴1: 1

C

𝐿𝐶: 2

𝑀𝐴1: 1

B

𝐿𝐶: 2

𝑀𝐴1: 1

D

𝐿𝐶: 2

𝑀𝐴1: 1

𝑀𝐴1: 1

TOM ACKs Illustrated 3

12 Jan 2025 SE 424: Distributed Systems 24

A

𝐿𝐶: 1

𝑀𝐴1: 1

C

𝐿𝐶: 2

𝑀𝐴1: 1

B

𝐿𝐶: 2

𝑀𝐴1: 1

D

𝐿𝐶: 2

𝑀𝐴1: 1

ACK 𝑀𝐴1

TOM ACKs Illustrated 4

12 Jan 2025 SE 424: Distributed Systems 25

A

𝐿𝐶: 1

𝑀𝐴1: 1

C

𝐿𝐶: 2

𝑀𝐴1: 1

B

𝐿𝐶: 2

𝑀𝐴1: 1

D

𝐿𝐶: 2

𝑀𝐴1: 1

ACK 𝑀𝐴1

TOM ACKs Illustrated 5

12 Jan 2025 SE 424: Distributed Systems 26

A

𝐿𝐶: 1

𝑀𝐴1: 1

C

𝐿𝐶: 2

𝑀𝐴1: 1

B

𝐿𝐶: 2

𝑀𝐴1: 1

D

𝐿𝐶: 2

𝑀𝐴1: 1

ACK 𝑀𝐴1

TOM ACKs Illustrated 6

12 Jan 2025 SE 424: Distributed Systems 27

A

𝐿𝐶: 1

𝑀𝐴1: 1

C

𝐿𝐶: 2

𝑀𝐴1: 1

B

𝐿𝐶: 2

𝑀𝐴1: 1

D

𝐿𝐶: 2

𝑀𝐴1: 1

ACK 𝑀𝐴1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐴1: 1

TOM ACKs Illustrated 7

12 Jan 2025 SE 424: Distributed Systems 28

A

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 3

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐵2: 3

TOM ACKs Illustrated 8

12 Jan 2025 SE 424: Distributed Systems 29

A

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 3

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

ACK 𝑀𝐵2

TOM ACKs Illustrated 9

12 Jan 2025 SE 424: Distributed Systems 30

A

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 3

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

ACK 𝑀𝐵2

TOM ACKs Illustrated 10

12 Jan 2025 SE 424: Distributed Systems 31

A

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 3

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

ACK 𝑀𝐵2

TOM ACKs Illustrated 11

12 Jan 2025 SE 424: Distributed Systems 32

A

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 3

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 4

𝑀𝐵2: 3

𝑀𝐴1: 1

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

𝐶𝑜𝑚𝑚𝑖𝑡
𝑀𝐵2: 3

TOM ACKs Illustrated 12

12 Jan 2025 SE 424: Distributed Systems 33

A

𝐿𝐶: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 9

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 10

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐴5: 9 𝑀𝐶6: 9

TOM ACKs Illustrated 12

12 Jan 2025 SE 424: Distributed Systems 34

A

𝐿𝐶: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 9

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 10

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

ACK 𝑀𝐴5
ACK 𝑀𝐶6

TOM ACKs Illustrated 13

12 Jan 2025 SE 424: Distributed Systems 35

A

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

C

𝐿𝐶: 10

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

B

𝐿𝐶: 11

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

D

𝐿𝐶: 11

𝑀𝐶6: 9

𝑀𝐴5: 9

𝑀𝐷4: 7

𝑀𝐶3: 5

𝑀𝐵2: 3

𝑀𝐴1: 1

𝑀𝐴5: 9 𝑀𝐶6: 9

So Far

• Logical Clocks

– Lamport

– Totally Ordered Multicast

• (Mattern) Vector Clocks

12 Jan 2025 SE 424: Distributed Systems 36

12 Jan 2025 SE 424: Distributed Systems 37

Vector Clocks
Observation: Lamport’s clocks do not guarantee that if 𝐶(𝑎) < 𝐶(𝑏) that 𝑎

causally preceded 𝑏:

Observation:

Event 𝑎: 𝑚1 is received at 𝑇 = 16.

Event 𝑏: 𝑚2 is sent at 𝑇 = 20.

We cannot conclude that 𝑎 causally precedes 𝑏.

12 Jan 2025 SE 424: Distributed Systems 38

Vector Clocks
Solution:

• Each process 𝑃𝑖 has an array 𝑉𝐶𝑖[1. . 𝑛], where 𝑉𝐶𝑖[𝑗] denotes the

number of events that process 𝑃𝑖 knows have taken place at process

𝑃𝑗

• When 𝑃𝑖 sends a message 𝑚, it adds 1 to 𝑉𝐶𝑖[𝑖], and sends 𝑉𝐶𝑖 along

with 𝑚 as vector timestamp 𝑣𝑡(𝑚). Result: upon arrival, recipient

knows 𝑃𝑖’s timestamp.

• When a process 𝑃𝑗 delivers a message 𝑚 that it received from 𝑃𝑖 with

vector timestamp 𝑡𝑠(𝑚), it

1) updates each 𝑉𝐶𝑗 [𝑘] to max{𝑉𝐶𝑗[𝑘], 𝑡𝑠(𝑚)[𝑘]} for each 𝑘

2) increments 𝑉𝐶𝑗[𝑗] by 1.

Question: What does 𝑉𝐶𝑖[𝑗] = 𝑘 mean in terms of messages sent and

received?

12 Jan 2025 SE 424: Distributed Systems 39

Vector and Lamport Clocks
Lamport Clocks

Rule 1: Each process has its own
version of the global clock

Rule 2: Each process increments
its global clock version when it
performs an internal event or
sends a message (which
includes a timestamp)

Rule 3: When a process receives a
message from another process
it updates its global clock
version if the received
timestamp is larger.

Vector clocks

Rule 1: Each process has its own
clock and a version of every
other processes’ clock.

Rule 2: Each process increments
its own clock when it sends or
receives a message.

Rule 3: When a process receives a
message from another process
it updates its version of the
other clocks’ timestamps if the
received timestamp is larger

12 Jan 2025 SE 424: Distributed Systems 40

Vector Clock Example

𝑃1 𝑃2

𝑃3

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 0

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 0

𝑃1 1

𝑃2 0

𝑃3 1

𝑃1 1

𝑃2 0

𝑃3 2

𝑃1 1

𝑃2 0

𝑃3 2

𝑃1 2

𝑃2 2

𝑃3 2

𝑃1 2

𝑃2 3

𝑃3 2

𝑃1 2

𝑃2 3

𝑃3 3

𝑃1 2

𝑃2 3

𝑃3 2

𝑃1 2

𝑃2 3

𝑃3 4

𝑃1 2

𝑃2 3

𝑃3 4

𝑃1 3

𝑃2 3

𝑃3 4

𝑚1

𝑚3

𝑚4

𝑚5

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 0

𝑃3 0

𝑃1 2

𝑃2 1

𝑃3 0

𝑚2

12 Jan 2025 SE 424: Distributed Systems 41

Vector Clock Example
1. 𝑚1 < 𝑚2

2. 𝑚1 < 𝑚3

3. 𝑚1 < 𝑚4

4. 𝑚1 < 𝑚5

5. 𝑚2 <> 𝑚3

6. 𝑚2 < 𝑚4

7. 𝑚2 < 𝑚5

8. 𝑚3 < 𝑚4

9. 𝑚3 < 𝑚5

10. 𝑚4 < 𝑚5

𝑃1 1

𝑃2 0

𝑃3 2

m3

𝑃1 1

𝑃2 0

𝑃3 0

m1

𝑃1 2

𝑃2 0

𝑃3 0

m2

𝑃1 2

𝑃2 3

𝑃3 2

m4

𝑃1 2

𝑃2 3

𝑃3 4

m5

Conclusion

• Logical Clocks

– Lamport

– Totally Ordered Multicast

• (Mattern) Vector Clocks

12 Jan 2025 SE 424: Distributed Systems 42

	Default Section
	Slide 1: Lamport Logical Clocks, Totally Ordered Multicast, Vector Clocks 12 January 2025 Lecture 10
	Slide 2: Topics for Today

	Logical Clock
	Slide 3: The Happened-Before Relationship
	Slide 4: Logical Clocks (1/2)
	Slide 5: Logical Clocks (2/2)
	Slide 6: Note
	Slide 7: Logical Clocks - Example
	Slide 8: Logical Clocks – Example

	Totally Ordered Multicast
	Slide 9: So Far
	Slide 10: Example: Totally Ordered Multicast (1/2)
	Slide 11: Example: Totally Ordered Multicast (2/2)
	Slide 12: TOM Illustrated 1
	Slide 13: TOM Illustrated 2
	Slide 14: TOM Illustrated 3
	Slide 15: TOM Illustrated 4
	Slide 16: TOM Illustrated 5
	Slide 17: TOM Illustrated 6
	Slide 18: TOM Illustrated 7
	Slide 19: TOM Illustrated 8
	Slide 20: TOM Illustrated 9
	Slide 21: TOM with ACKs
	Slide 22: TOM ACKs Illustrated 1
	Slide 23: TOM ACKs Illustrated 2
	Slide 24: TOM ACKs Illustrated 3
	Slide 25: TOM ACKs Illustrated 4
	Slide 26: TOM ACKs Illustrated 5
	Slide 27: TOM ACKs Illustrated 6
	Slide 28: TOM ACKs Illustrated 7
	Slide 29: TOM ACKs Illustrated 8
	Slide 30: TOM ACKs Illustrated 9
	Slide 31: TOM ACKs Illustrated 10
	Slide 32: TOM ACKs Illustrated 11
	Slide 33: TOM ACKs Illustrated 12
	Slide 34: TOM ACKs Illustrated 12
	Slide 35: TOM ACKs Illustrated 13

	Vector Clocks
	Slide 36: So Far
	Slide 37: Vector Clocks
	Slide 38: Vector Clocks
	Slide 39: Vector and Lamport Clocks
	Slide 40: Vector Clock Example
	Slide 41: Vector Clock Example
	Slide 42: Conclusion

