
3 Nov 2024 SE 424: Distributed Systems 1

Introduction to Distributed

Systems, Client/Server and

Peer to Peer

3 November 2024

Lecture 1

Most Slide Credits: Maarten van Steen

Lecturer: Dr. Michael J. May

Kinneret College

Distributed System: Definition
A distributed system is a piece of software that ensures that:

 a collection of autonomous computing elements that appears to its
users as a single coherent system

Two aspects: (1) Autonomous computing elements, also referred to as

nodes, be they hardware devices or software processes and (2)

Single coherent system: users or applications perceive a single

system → nodes need to collaborate.

Each node is autonomous:

• Its own notion of time → there is no global clock

• Leads to fundamental synchronization and coordination problems.

Collection of nodes and group:

• How to manage group membership?

• How to know you are communicating with an authorized member?

3 Nov 2024 SE 424: Distributed Systems 2

Why build them?

Integrative view:

Connecting existing
networked computer

systems into a larger a
system.

Expansive view:

An existing networked
computer systems is

extended with additional
computers

3 Nov 2024 SE 424: Distributed Systems 3

Decentralized vs. Distributed

Decentralized

• A networked computer

system in which

processes and resources

are necessarily spread

across multiple

computers.

• We must spread

processes and resources

across computers

Distributed

• A networked computer

system in which

processes and resources

are sufficiently spread

across multiple

computers.

• We spread until we have

reached some level of

sufficiency – it’s

distributed enough

3 Nov 2024 SE 424: Distributed Systems 4

Centralized Solutions

• A single computer that

decides and rules

– Order

– Simplicity

3 Nov 2024 SE 424: Distributed Systems 5

https://www.rottentomatoes.com/m/the_dictator_2012

Centralized Pluses

• Easy coordination

• Assignment of responsibility

3 Nov 2024 SE 424: Distributed Systems 6

Centralized Misconceptions

Misconception: Centralized solutions do not scale

Distinguish logically and physically centralized.

Example: The roots of the Domain Name System:

• logically centralized

• physically (massively) distributed

• decentralized across several organizations

3 Nov 2024 SE 424: Distributed Systems 7

Centralized Misconceptions

Misconception: Centralized solutions have a single point of

failure

Generally not true (e.g., the root of DNS). A single point of

failure is often:

• easier to manage

• easier to make more robust

3 Nov 2024 SE 424: Distributed Systems 8

Organization

Overlay network

• Each node in the

collection communicates

only with other nodes in

the system, its neighbors.

The set of neighbors may

be dynamic, or may even

be known only implicitly

(i.e., requires a lookup).

Overlay types

• Well-known example of

overlay networks: peer-

to-peer systems.

– Structured: each node has

a well-defined set of

neighbors with whom it can

communicate (tree, ring).

– Unstructured: each node

has references to randomly

selected other nodes from

the system.

3 Nov 2024 SE 424: Distributed Systems 9

Coherent system
• The collection of nodes as a whole operates the same, no

matter where, when, and how interaction between a user and
the system takes place.

• Examples:

1. An end user cannot tell where a computation is taking place

2. Where data is exactly stored should be irrelevant to an
application

3. Whether data has been replicated or not is completely hidden

Key: Distribution Transparency

Snag: Partial Failures

• It’s inevitable that at any time only a part of the distributed
system fails. Hiding partial failures and their recovery is often
very difficult and in general impossible to hide.

3 Nov 2024 SE 424: Distributed Systems 10

Middleware: OS of Distributed Systems

3 Nov 2024 SE 424: Distributed Systems 11

What’s inside?

• Commonly used components and functions that need not

be implemented by applications separately.

What do we want to achieve?

Supporting
sharing of
resources

Distribution
transparency

Openness Scalability

3 Nov 2024 SE 424: Distributed Systems 12

Sharing resources

• Canonical examples

– Cloud-based shared storage and files

– Peer-to-peer assisted multimedia streaming

– Shared mail services (think of outsourced mail systems)

– Shared Web hosting (think of content distribution networks)

Observation:

• “The network is the computer”

 (quote from John Gage, then at Sun Microsystems)

3 Nov 2024 SE 424: Distributed Systems 13

Distribution Transparency

3 Nov 2024 SE 424: Distributed Systems 14

Transparency Description

Access
Hide differences in data representation and how an object is

accessed

Location Hide where an object is located

Relocation
Hide that an object may be moved to another location

while in use

Migration Hide that an object may move (itself) to another location

Replication Hide that an object is replicated

Concurrency
Hide that an object may be shared by several

independent users

Failure Hides failure and recovery of objects

Note: Distribution transparency is a nice goal, but aiming at full distribution

transparency may be too much

3 Nov 2024 SE 424: Distributed Systems 15

Degree of Transparency

Observation: Aiming at full distribution transparency may be

too much.

• There are communication latencies that cannot be hidden

• Completely hiding failures of networks and nodes is

(theoretically and practically) impossible

– You cannot distinguish a slow computer from a failing one

– You can never be sure that a server actually performed an

operation before a crash

• Full transparency will cost performance, exposing

distribution of the system

– Keeping replicas exactly up-to-date with the master takes time

– Immediately flushing write operations to disk for fault tolerance

https://xkcd.com/2209/

Exposing Distribution

• Exposing distribution may be good

– Making use of location-based services (finding your nearby

friends)

– When dealing with users in different time zones

– When it makes it easier for a user to understand what’s going on

(when e.g., a server does not respond for a long time, report it as

failing).

• Conclusion:

– Distribution transparency is a nice a goal, but achieving it is a

different story, and it should often not even be aimed at.

3 Nov 2024 SE 424: Distributed Systems 17

3 Nov 2024 SE 424: Distributed Systems 18

Openness of Distributed Systems

Open distributed system

Be able to interact with services from other open systems,
irrespective of the underlying environment:

• Systems should conform to well-defined interfaces

• Systems should support portability of applications

• Systems should easily interoperate

Achieving openness

At least make the distributed system independent from
heterogeneity of the underlying environment:

• Hardware

• Platforms

• Languages

Openness of Distributed Systems

This is hard

3 Nov 2024 SE 424: Distributed Systems 19

3 Nov 2024 SE 424: Distributed Systems 21

Scale in Distributed Systems
Observation

Many developers of modern distributed systems easily use the adjective

“scalable” without making clear why their system actually scales.

Scalability

At least three components:

• Number of users and/or processes (size scalability)

• Maximum distance between nodes (geographical scalability)

• Number of administrative domains (administrative scalability)

Observation

Most systems account only, to a certain extent, for size scalability. The

(non)solution: powerful servers. Today, the challenge lies in

geographical and administrative scalability.

Geographical scalability

3 Nov 2024 SE 424: Distributed Systems 22

Cannot simply go
from LAN to

WAN:

• Many distributed
systems assume
synchronous
client-server
interactions

• Client sends
request and
waits for an
answer.

• Latency may
easily prohibit
this scheme.

WAN links are
often inherently

unreliable

• Simply moving
streaming video
from LAN to
WAN will fail.

Lack of multipoint
communication

• A simple search
broadcast
cannot be
deployed.

• Solution:
Develop
separate naming
and directory
services (having
their own
scalability
problems).

Administrative scalability

Essence: Conflicting policies concerning usage (and thus

payment), management, and security

Exception: Several peer-to-

peer networks

• File-sharing systems

(based, e.g., on BitTorrent)

• Peer-to-peer telephony

(Skype)

• Peer-assisted audio

streaming (Spotify)

Note: End users collaborate

and not administrative

entities.

3 Nov 2024 SE 424: Distributed Systems 23

Examples:

• Computational grids:

share expensive

resources between

different domains.

• Shared equipment: how to

control, manage, and use

a shared radio telescope

constructed as large-scale

shared sensor network?

Size Scalability

• Root causes for scalability problems with centralized

solutions

3 Nov 2024 SE 424: Distributed Systems 24

Computational
capacity, limited by

the CPUs

Storage capacity,
including the
transfer rate

between CPUs and
disks

Network between
the user and the

centralized service

Size Scaling Technique 1

Hide communication latencies

Avoid waiting for responses; do something else:

3 Nov 2024 SE 424: Distributed Systems 25

Make use of
asynchronous
communication

Have separate
handler for
incoming
response

Problem: not
every

application fits
this model

Size Scaling Technique 2

Replication/caching

Make copies of data available at different machines:

Replicated file
servers and
databases

Mirrored Web
sites

Web caches
(in browsers
and proxies)

File caching
(at server and

client)

3 Nov 2024 SE 424: Distributed Systems 26

3 Nov 2024 SE 424: Distributed Systems 27

Replication Problems
Observation

Applying scaling techniques is easy, except for one thing:

• Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy
different from the rest.

• Always keeping copies consistent and in a general way
requires global synchronization on each modification.

• Global synchronization precludes large-scale solutions.

Observation

If we can tolerate inconsistencies, we may reduce the need
for global synchronization, but tolerating inconsistencies is
application dependent.

3 Nov 2024 SE 424: Distributed Systems 28

So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics

3 Nov 2024 SE 424: Distributed Systems 29

Architectural Styles

Basic Idea

Organize into logically different components and distribute

those components over the various machines

(a) Layered style is used for client-server system

(b) Object-based style for distributed object systems

3 Nov 2024 SE 424: Distributed Systems 30

Architectural Styles

Observation

Decoupling processes (“anonymous”) and removing time

constraints (“asynchronous”) led to alternative styles.

(a) Publish/Subscribe [anonymous]

(b) Shared dataspace [anonymous and asynchronous]

3 Nov 2024 SE 424: Distributed Systems 31

So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics

Physical architecture

• How many computers

• Where they are located

Logical architecture &
Deployment

3 Nov 2024 SE 424: Distributed Systems 32

Discern

3 Nov 2024 SE 424: Distributed Systems 33

Phys: Centralized Architectures
Basic Client-Server Model

Characteristics:

• There are processes offering services (servers)

• There are processes that use services (clients)

• Clients and servers can be on different machines

• Clients follow request/reply model with respect to using services

3 Nov 2024 SE 424: Distributed Systems 34

Log: Application Layering

Traditional three-layered view

• User-interface layer contains units for an application’s

user interface

• Processing layer contains the functions of an application,

i.e. without specific data

• Data layer contains the data that a client wants to

manipulate through the application components

Observation

This layering is found in many distributed information

systems, using traditional database technology and

accompanying applications

3 Nov 2024 SE 424: Distributed Systems 35

Application Layering

3 Nov 2024 SE 424: Distributed Systems 36

Dep: Multi-Tiered Architectures
Single-tiered: dumb terminal/mainframe configuration

Two-tiered: client/single server configuration

Three-tiered: each layer on a separate machine

Traditional two-tiered configurations:

3 Nov 2024 SE 424: Distributed Systems 37

Phys: Decentralized Arch
Observation

Tremendous growth in peer-to-peer systems

• Structured P2P: nodes are organized following a specific
distributed data structure

• Unstructured P2P: nodes have randomly selected
neighbors

• Hybrid P2P: some nodes are appointed special functions
in a well-organized fashion

Note

In virtually all cases, we are dealing with overlay networks:
data is routed over connections setup between the nodes
(via application level multicasting)

3 Nov 2024 SE 424: Distributed Systems 38

So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics

3 Nov 2024 SE 424: Distributed Systems 39

Structured P2P Systems

Basic idea

Organize the nodes in a structured overlay network such as

a logical ring and make specific nodes responsible for

services based only on their ID

Note

The system provides an operation

LOOKUP(key) that will efficiently

route the lookup request to the

associated node.

3 Nov 2024 SE 424: Distributed Systems 40

Structured P2P Systems

Other example

Organize nodes in a hypercube

Some structured P2P Algorithms
Apache

Cassandra
• https://cassandra.apache.org/

BATON Overlay • http://www.eecs.umich.edu./db/files/p661-jagadish.pdf

Mainline DHT • Based on Kademlia, used by BitTorrent,
http://www.bittorrent.org/beps/bep_0005.html

Content
addressable

network (CAN)
• http://www.eecs.berkeley.edu/~sylvia/papers/cans.pdf

Chord • https://github.com/sit/dht/wiki

Koorde • Derived from Chord, http://iptps03.cs.berkeley.edu/final-papers/koorde.ps

Kademlia • http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html

Pastry • http://freepastry.org/

P-Grid • http://www.p-grid.com/

Riak • https://riak.com/

Tapestry • http://pdos.csail.mit.edu/~strib/docs/tapestry/tapestry_jsac03.pdf

TomP2P • https://tomp2p.net/

Voldemort • http://www.project-voldemort.com/voldemort/

3 Nov 2024 SE 424: Distributed Systems 41

3 Nov 2024 SE 424: Distributed Systems 42

Unstructured P2P Systems
Observation

Many unstructured P2P systems attempt to maintain a random overlay;
two nodes are linked with probability 𝑝.

Basic principles

Each node is required to contact a randomly selected other node:

• Let each peer maintain a partial view of the network, consisting of c
other nodes

• Each node P periodically selects a node Q from its partial view

• P and Q exchange information and exchange members from their
respective partial views

Note

It turns out that, depending on the exchange, randomness, but also
robustness can be maintained.

Unstructured P2P Systems

Observation

We can no longer look up information deterministically; we

must resort to searching.

Model:

• Assume 𝑁 nodes and that each data item is replicated

across 𝑟 randomly chosen nodes.

Two basic ideas:

3 Nov 2024 SE 424: Distributed Systems 43

Flooding

Random Walk
• Randomly select a neighbor 𝑣. If 𝑣 has the answer,

it replies, otherwise 𝑣 randomly selects one of its neighbors.

– Variation: parallel random walk. Works well with replicated data.

Analysis

• 𝑃[𝑘] probability that item is found after 𝑘 attempts:

𝑃 𝑘 =
𝑟

𝑁
1 −

𝑟

𝑁

𝑘−1

𝑆 (“search size”) is expected number of nodes that need to be probed:

𝑆 = σ𝑘=1
𝑁 𝑘 × 𝑃[𝑘] = σ𝑘=1

𝑁 𝑘 ×
𝑟

𝑁
1 −

𝑟

𝑁

𝑘−1
≈

𝑁

𝑟

for 1 ≪ 𝑟 ≤ 𝑁

3 Nov 2024 SE 424: Distributed Systems 44

Flooding
• Node 𝑢 sends a lookup query to all of its neighbors. A

neighbor responds, or forwards (floods) the request.

• Variations:
– Limited flooding (maximal number of forwarding)

– Probabilistic flooding (flood only with a certain probability).

Analysis:
• Limited Flood to 𝑑 randomly chosen neighbors
• After 𝑘 steps, some

𝑅 𝑘 = 𝑑 × 𝑑 − 1 𝑘−1

 will have been reached (assuming 𝑘 is small).

• With fraction
𝑟

𝑁
 nodes having data, if

𝑟

𝑁
× 𝑅 𝑘 ≥ 1

• we will have found the data item

3 Nov 2024 SE 424: Distributed Systems 45

Comparing Random Walk vs. Flooding

Random Walk

If
𝑟

𝑁
= 0.001, then

𝑆 ≈ 1000

Flooding

With 𝑑 = 10, 𝑘 =
4, we contact
7290 nodes.

3 Nov 2024 SE 424: Distributed Systems 46

Random walks are more communication efficient but might

take longer before they find the result.

3 Nov 2024 SE 424: Distributed Systems 47

Unstructured P2P Systems
Observation

Many unstructured P2P systems attempt to maintain a random overlay;
two nodes are linked with probability 𝑝.

Basic principles

Each node is required to contact a randomly selected other node:

• Let each peer maintain a partial view of the network, consisting of c
other nodes

• Each node P periodically selects a node Q from its partial view

• P and Q exchange information and exchange members from their
respective partial views

Note

It turns out that, depending on the exchange, randomness, but also
robustness can be maintained.

3 Nov 2024 SE 424: Distributed Systems 48

Topology Management of Overlay Networks

Basic idea

Distinguish two layers: (1) maintain random partial views in lowest layer;

(2) be selective on who you keep in higher-layer partial view.

Note

Lower layer feeds upper layer with random nodes; upper layer is

selective when it comes to keeping references.

3 Nov 2024 SE 424: Distributed Systems 50

Superpeers

Observation

Sometimes it helps to select a few nodes to do specific work:

superpeer

Examples

• Peers maintaining an

index (for search)

• Peers monitoring the

state of the network

• Peers able to setup

connections

Collaboration: BitTorrent
• Principle: search for a file F

• Lookup file at a global directory ⇒ returns a torrent file

• Torrent file contains reference to tracker: a server keeping an
accurate account of active nodes that have (chunks of) F .

• P can join swarm, get a chunk for free, and then trade a
copy of that chunk for another one with a peer Q also in the
swarm

B
y
 R

a
in

b
e
rr

y
 ,

In
c
.
-

B
a
s
e
d
 o

n
 l
o

g
o
 f

o
u
n
d
 o

n
 t

h
is

 n
e
w

s
 a

rt
ic

le
,
P

u
b
lic

 D
o
m

a
in

,

h
tt

p
s
:/

/c
o
m

m
o
n
s
.w

ik
im

e
d
ia

.o
rg

/w
/i
n

d
e
x
.p

h
p
?
c
u
ri
d

=
8
1
5
7
6

5
1

7

3 Nov 2024 SE 424: Distributed Systems 51

3 Nov 2024 SE 424: Distributed Systems 52

So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics

Edge-server architecture
Essence

Systems deployed on the Internet where servers are placed

at the edge of the network: the boundary between enterprise

networks and the actual Internet.

3 Nov 2024 SE 424: Distributed Systems 53

Why edge?

Latency and bandwidth

• Especially important for certain real-
time applications, such as
augmented/virtual reality applications.

• Many underestimate the latency and
bandwidth to the cloud.

Reliability

• Connection to the cloud is often
assumed to be unreliable, which may
be a false assumption.

• May be critical situations in which
extremely high connectivity
guarantees are needed.

Security and privacy

• The implicit assumption is often that
when assets are nearby, they can be
made better protected.

• Practice shows this is generally false.

• However, securely handling data
operations in the cloud may be trickier
than within your own organization.

3 Nov 2024 SE 424: Distributed Systems 54

https://images.freeimages.com/fic/images/icons/470/u2/256/edge.png

Edge orchestration

Managing resources at the edge may be trickier than in

the cloud

• Resource allocation: we need to guarantee the

availability of the resources required to perform a

service.

• Service placement: we need to decide when and where

to place a service. This is notably relevant for mobile

applications.

• Edge selection: we need to decide which edge infrastructure

should be used when a service needs to be offered. The

closest one may not be the best one.

3 Nov 2024 SE 424: Distributed Systems 55

A little aside

3 Nov 2024 SE 424: Distributed Systems 56

Photo by Hitesh Choudhary on Unsplash

Blockchain Basics

3 Nov 2024 SE 424: Distributed Systems 57

Blockchain Basics

• Observations

• Blocks are organized into an unforgeable append-

only chain

• Each block in the blockchain is immutable ⇒
massive replication

•The real snag lies in who is allowed to append a

block to a chain

3 Nov 2024 SE 424: Distributed Systems 58

• A single entity decides on which validator can go ahead
and append a block.

• Does not fit the design goals of blockchains.

Appending a block: Centralized

3 Nov 2024 SE 424: Distributed Systems 59

• A selected, relatively small group of servers jointly reach

consensus on which validator can go ahead.

• None of the servers needs to be trusted, if ≈
2

3
 behave

according to specification.

• In practice, only 10s of servers can be accommodated.

Appending a block: Distributed

Permissioned

3 Nov 2024 SE 424: Distributed Systems 60

• Participants collectively engage in a leader election. Only

the elected leader is allowed to append a block of validated

transactions.

• Large-scale, decentralized leader election that is fair, robust,

secure, etc. is not trivial.

Appending a block: Distributed

Permissionless

3 Nov 2024 SE 424: Distributed Systems 61

3 Nov 2024 SE 424: Distributed Systems 62

Conclusion

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics

	Slide 1: Introduction to Distributed Systems, Client/Server and Peer to Peer 3 November 2024 Lecture 1
	Slide 2: Distributed System: Definition
	Slide 3: Why build them?
	Slide 4: Decentralized vs. Distributed
	Slide 5: Centralized Solutions
	Slide 6: Centralized Pluses
	Slide 7: Centralized Misconceptions 🤓
	Slide 8: Centralized Misconceptions 🤓
	Slide 9: Organization
	Slide 10: Coherent system
	Slide 11: Middleware: OS of Distributed Systems
	Slide 12: What do we want to achieve?
	Slide 13: Sharing resources
	Slide 14: Distribution Transparency
	Slide 15: Degree of Transparency
	Slide 17: Exposing Distribution
	Slide 18: Openness of Distributed Systems
	Slide 19: Openness of Distributed Systems
	Slide 21: Scale in Distributed Systems
	Slide 22: Geographical scalability
	Slide 23: Administrative scalability
	Slide 24: Size Scalability
	Slide 25: Size Scaling Technique 1
	Slide 26: Size Scaling Technique 2
	Slide 27: Replication Problems
	Slide 28: So Far
	Slide 29: Architectural Styles
	Slide 30: Architectural Styles
	Slide 31: So Far
	Slide 32: Discern
	Slide 33: Phys: Centralized Architectures
	Slide 34: Log: Application Layering
	Slide 35: Application Layering
	Slide 36: Dep: Multi-Tiered Architectures
	Slide 37: Phys: Decentralized Arch
	Slide 38: So Far
	Slide 39: Structured P2P Systems
	Slide 40: Structured P2P Systems
	Slide 41: Some structured P2P Algorithms
	Slide 42: Unstructured P2P Systems
	Slide 43: Unstructured P2P Systems
	Slide 44: Random Walk
	Slide 45: Flooding
	Slide 46: Comparing Random Walk vs. Flooding
	Slide 47: Unstructured P2P Systems
	Slide 48: Topology Management of Overlay Networks
	Slide 50: Superpeers
	Slide 51: Collaboration: BitTorrent
	Slide 52: So Far
	Slide 53: Edge-server architecture
	Slide 54: Why edge?
	Slide 55: Edge orchestration
	Slide 56: A little aside
	Slide 57: Blockchain Basics
	Slide 58: Blockchain Basics
	Slide 59: Appending a block: Centralized
	Slide 60: Appending a block: Distributed
	Slide 61: Appending a block: Distributed
	Slide 62: Conclusion

