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Distributed System: Definition
A distributed system is a piece of software that ensures that:

 a collection of autonomous computing elements that appears to its 
users as a single coherent system

Two aspects: (1) Autonomous computing elements, also referred to as 

nodes, be they hardware devices or software processes and (2) 

Single coherent system: users or applications perceive a single 

system → nodes need to collaborate.

Each node is autonomous: 

• Its own notion of time → there is no global clock

• Leads to fundamental synchronization and coordination problems.

Collection of nodes and group:

• How to manage group membership?

• How to know you are communicating with an authorized member?
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Why build them?

Integrative view:

Connecting existing 
networked computer 

systems into a larger a 
system.

Expansive view:

An existing networked 
computer systems is 

extended with additional 
computers
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Decentralized vs. Distributed

Decentralized

• A networked computer 

system in which 

processes and resources 

are necessarily spread 

across multiple 

computers.

• We must spread 

processes and resources 

across computers

Distributed

• A networked computer 

system in which 

processes and resources 

are sufficiently spread 

across multiple 

computers.

• We spread until we have 

reached some level of 

sufficiency – it’s 

distributed enough
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Centralized Solutions

• A single computer that 

decides and rules

– Order

– Simplicity
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https://www.rottentomatoes.com/m/the_dictator_2012



Centralized Pluses

• Easy coordination

• Assignment of responsibility
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Centralized Misconceptions 

Misconception: Centralized solutions do not scale

Distinguish logically and physically centralized.

Example: The roots of the Domain Name System:

• logically centralized

• physically (massively) distributed

• decentralized across several organizations
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Centralized Misconceptions 

Misconception: Centralized solutions have a single point of 

failure

Generally not true (e.g., the root of DNS). A single point of 

failure is often:

• easier to manage

• easier to make more robust
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Organization

Overlay network

• Each node in the 

collection communicates 

only with other nodes in 

the system, its neighbors. 

The set of neighbors may 

be dynamic, or may even 

be known only implicitly 

(i.e., requires a lookup).

Overlay types

• Well-known example of 

overlay networks: peer-

to-peer systems.

– Structured: each node has 

a well-defined set of 

neighbors with whom it can 

communicate (tree, ring).

– Unstructured: each node 

has references to randomly 

selected other nodes from 

the system.
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Coherent system
• The collection of nodes as a whole operates the same, no 

matter where, when, and how interaction between a user and 
the system takes place.

• Examples:

1. An end user cannot tell where a computation is taking place

2. Where data is exactly stored should be irrelevant to an 
application

3. Whether data has been replicated or not is completely hidden

Key: Distribution Transparency

Snag: Partial Failures

• It’s inevitable that at any time only a part of the distributed 
system fails. Hiding partial failures and their recovery is often 
very difficult and in general impossible to hide.
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Middleware: OS of Distributed Systems
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What’s inside?

• Commonly used components and functions that need not 

be implemented by applications separately.



What do we want to achieve?

Supporting 
sharing of 
resources

Distribution 
transparency

Openness Scalability
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Sharing resources

• Canonical examples

– Cloud-based shared storage and files

– Peer-to-peer assisted multimedia streaming

– Shared mail services (think of outsourced mail systems)

– Shared Web hosting (think of content distribution networks)

Observation:

• “The network is the computer”

 (quote from John Gage, then at Sun Microsystems)
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Distribution Transparency
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Transparency Description

Access
Hide differences in data representation and how an object is 

accessed

Location Hide where an object is located

Relocation
Hide that an object may be moved to another location

while in use

Migration Hide that an object may move (itself) to another location

Replication Hide that an object is replicated

Concurrency
Hide that an object may be shared by several

independent users

Failure Hides failure and recovery of objects

Note: Distribution transparency is a nice goal, but aiming at full distribution 

transparency may be too much
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Degree of Transparency

Observation: Aiming at full distribution transparency may be 

too much.

• There are communication latencies that cannot be hidden

• Completely hiding failures of networks and nodes is 

(theoretically and practically) impossible

– You cannot distinguish a slow computer from a failing one

– You can never be sure that a server actually performed an 

operation before a crash

• Full transparency will cost performance, exposing 

distribution of the system

– Keeping replicas exactly up-to-date with the master takes time

– Immediately flushing write operations to disk for fault tolerance

https://xkcd.com/2209/


Exposing Distribution

• Exposing distribution may be good

– Making use of location-based services (finding your nearby 

friends)

– When dealing with users in different time zones

– When it makes it easier for a user to understand what’s going on 

(when e.g., a server does not respond for a long time, report it as 

failing).

• Conclusion: 

– Distribution transparency is a nice a goal, but achieving it is a 

different story, and it should often not even be aimed at.
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Openness of Distributed Systems

Open distributed system

Be able to interact with services from other open systems, 
irrespective of the underlying environment:

• Systems should conform to well-defined interfaces

• Systems should support portability of applications

• Systems should easily interoperate

Achieving openness

At least make the distributed system independent from 
heterogeneity of the underlying environment:

• Hardware

• Platforms

• Languages



Openness of Distributed Systems

This is hard
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Scale in Distributed Systems
Observation

Many developers of modern distributed systems easily use the adjective 

“scalable” without making clear why their system actually scales.

Scalability

At least three components:

• Number of users and/or processes (size scalability)

• Maximum distance between nodes (geographical scalability)

• Number of administrative domains (administrative scalability)

Observation

Most systems account only, to a certain extent, for size scalability. The 

(non)solution: powerful servers. Today, the challenge lies in 

geographical and administrative scalability.



Geographical scalability
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Cannot simply go 
from LAN to 

WAN:

• Many distributed 
systems assume 
synchronous 
client-server 
interactions

• Client sends 
request and 
waits for an 
answer. 

• Latency may 
easily prohibit 
this scheme.

WAN links are 
often inherently 

unreliable

• Simply moving 
streaming video 
from LAN to 
WAN will fail.

Lack of multipoint 
communication

• A simple search 
broadcast 
cannot be 
deployed.

• Solution: 
Develop 
separate naming 
and directory 
services (having 
their own 
scalability 
problems).



Administrative scalability

Essence: Conflicting policies concerning usage (and thus 

payment), management, and security

Exception: Several peer-to-

peer networks

• File-sharing systems 

(based, e.g., on BitTorrent)

• Peer-to-peer telephony 

(Skype)

• Peer-assisted audio 

streaming (Spotify)

Note: End users collaborate 

and not administrative 

entities.
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Examples:

• Computational grids: 

share expensive 

resources between 

different domains.

• Shared equipment: how to 

control, manage, and use 

a shared radio telescope 

constructed as large-scale 

shared sensor network?



Size Scalability

• Root causes for scalability problems with centralized 

solutions
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Computational 
capacity, limited by 

the CPUs

Storage capacity, 
including the 
transfer rate 

between CPUs and 
disks

Network between 
the user and the 

centralized service



Size Scaling Technique 1

Hide communication latencies

Avoid waiting for responses; do something else:
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Make use of 
asynchronous 
communication

Have separate 
handler for 
incoming 
response

Problem: not 
every 

application fits 
this model



Size Scaling Technique 2

Replication/caching

Make copies of data available at different machines:

Replicated file 
servers and 
databases

Mirrored Web 
sites

Web caches 
(in browsers 
and proxies)

File caching 
(at server and 

client)
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Replication Problems
Observation

Applying scaling techniques is easy, except for one thing:

• Having multiple copies (cached or replicated), leads to 
inconsistencies: modifying one copy makes that copy 
different from the rest.

• Always keeping copies consistent and in a general way 
requires global synchronization on each modification.

• Global synchronization precludes large-scale solutions.

Observation

If we can tolerate inconsistencies, we may reduce the need 
for global synchronization, but tolerating inconsistencies is 
application dependent.
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So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics
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Architectural Styles

Basic Idea

Organize into logically different components and distribute 

those components over the various machines

(a) Layered style is used for client-server system

(b) Object-based style for distributed object systems



3 Nov 2024 SE 424: Distributed Systems 30

Architectural Styles

Observation

Decoupling processes (“anonymous”) and removing time 

constraints (“asynchronous”) led to alternative styles.

(a) Publish/Subscribe [anonymous]

(b) Shared dataspace [anonymous and asynchronous]
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So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics



Physical architecture

• How many computers

• Where they are located

Logical architecture & 
Deployment
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Discern
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Phys: Centralized Architectures
Basic Client-Server Model

Characteristics:

• There are processes offering services (servers)

• There are processes that use services (clients)

• Clients and servers can be on different machines

• Clients follow request/reply model with respect to using services



3 Nov 2024 SE 424: Distributed Systems 34

Log: Application Layering

Traditional three-layered view

• User-interface layer contains units for an application’s 

user interface

• Processing layer contains the functions of an application, 

i.e. without specific data

• Data layer contains the data that a client wants to 

manipulate through the application components

Observation

This layering is found in many distributed information 

systems, using traditional database technology and 

accompanying applications
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Application Layering
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Dep: Multi-Tiered Architectures
Single-tiered: dumb terminal/mainframe configuration

Two-tiered: client/single server configuration

Three-tiered: each layer on a separate machine

Traditional two-tiered configurations:
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Phys: Decentralized Arch
Observation

Tremendous growth in peer-to-peer systems

• Structured P2P: nodes are organized following a specific 
distributed data structure

• Unstructured P2P: nodes have randomly selected 
neighbors

• Hybrid P2P: some nodes are appointed special functions 
in a well-organized fashion

Note

In virtually all cases, we are dealing with overlay networks: 
data is routed over connections setup between the nodes 
(via application level multicasting)
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So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics
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Structured P2P Systems

Basic idea

Organize the nodes in a structured overlay network such as 

a logical ring and make specific nodes responsible for 

services based only on their ID

Note

The system provides an operation 

LOOKUP(key) that will efficiently 

route the lookup request to the 

associated node.
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Structured P2P Systems

Other example

Organize nodes in a hypercube



Some structured P2P Algorithms
Apache 

Cassandra
• https://cassandra.apache.org/

BATON Overlay • http://www.eecs.umich.edu./db/files/p661-jagadish.pdf

Mainline DHT • Based on Kademlia, used by BitTorrent, 
http://www.bittorrent.org/beps/bep_0005.html

Content 
addressable 

network (CAN)
• http://www.eecs.berkeley.edu/~sylvia/papers/cans.pdf

Chord • https://github.com/sit/dht/wiki

Koorde • Derived from Chord, http://iptps03.cs.berkeley.edu/final-papers/koorde.ps

Kademlia • http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html

Pastry • http://freepastry.org/

P-Grid • http://www.p-grid.com/

Riak • https://riak.com/

Tapestry • http://pdos.csail.mit.edu/~strib/docs/tapestry/tapestry_jsac03.pdf

TomP2P • https://tomp2p.net/

Voldemort • http://www.project-voldemort.com/voldemort/
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Unstructured P2P Systems
Observation

Many unstructured P2P systems attempt to maintain a random overlay; 
two nodes are linked with probability 𝑝.

Basic principles

Each node is required to contact a randomly selected other node:

• Let each peer maintain a partial view of the network, consisting of c 
other nodes

• Each node P periodically selects a node Q  from its partial view

• P  and Q exchange information and exchange members from their 
respective partial views

Note

It turns out that, depending on the exchange, randomness, but also 
robustness can be maintained.



Unstructured P2P Systems

Observation

We can no longer look up information deterministically; we 

must resort to searching.

Model:

• Assume 𝑁 nodes and that each data item is replicated 

across 𝑟 randomly chosen nodes.

Two basic ideas:
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Flooding



Random Walk
• Randomly select a neighbor 𝑣. If 𝑣 has the answer,

it replies, otherwise 𝑣 randomly selects one of its neighbors. 

– Variation: parallel random walk. Works well with replicated data.

Analysis

• 𝑃[𝑘] probability that item is found after 𝑘 attempts:

𝑃 𝑘 =
𝑟

𝑁
1 −

𝑟

𝑁

𝑘−1

𝑆 (“search size”) is expected number of nodes that need to be probed:

𝑆 = σ𝑘=1
𝑁 𝑘 × 𝑃[𝑘] = σ𝑘=1

𝑁 𝑘 ×
𝑟

𝑁
1 −

𝑟

𝑁

𝑘−1
≈

𝑁

𝑟
 

for 1 ≪ 𝑟 ≤ 𝑁
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Flooding
• Node 𝑢 sends a lookup query to all of its neighbors. A

neighbor responds, or forwards (floods) the request.

• Variations:
– Limited flooding (maximal number of forwarding)

– Probabilistic flooding (flood only with a certain probability).

Analysis:
• Limited Flood to 𝑑 randomly chosen neighbors
• After 𝑘 steps, some

𝑅 𝑘 = 𝑑 × 𝑑 − 1 𝑘−1

     will have been reached (assuming 𝑘 is small).

• With fraction 
𝑟

𝑁
 nodes having data, if

𝑟

𝑁
× 𝑅 𝑘 ≥ 1

• we will have found the data item
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Comparing Random Walk vs. Flooding

Random Walk

If 
𝑟

𝑁
= 0.001, then 

𝑆 ≈ 1000

Flooding

With 𝑑 = 10, 𝑘 =
4, we contact 
7290 nodes.
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Random walks are more communication efficient but might 

take longer before they find the result.
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Unstructured P2P Systems
Observation

Many unstructured P2P systems attempt to maintain a random overlay; 
two nodes are linked with probability 𝑝.

Basic principles

Each node is required to contact a randomly selected other node:

• Let each peer maintain a partial view of the network, consisting of c 
other nodes

• Each node P periodically selects a node Q  from its partial view

• P  and Q exchange information and exchange members from their 
respective partial views

Note

It turns out that, depending on the exchange, randomness, but also 
robustness can be maintained.
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Topology Management of Overlay Networks

Basic idea

Distinguish two layers: (1) maintain random partial views in lowest layer; 

(2) be selective on who you keep in higher-layer partial view.

Note

Lower layer feeds upper layer with random nodes; upper layer is 

selective when it comes to keeping references.
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Superpeers

Observation

Sometimes it helps to select a few nodes to do specific work: 

superpeer

Examples

• Peers maintaining an 

index (for search)

• Peers monitoring the 

state of the network

• Peers able to setup 

connections



Collaboration: BitTorrent
• Principle: search for a file F

• Lookup file at a global directory ⇒  returns a torrent file

• Torrent file contains reference to tracker: a server keeping an 
accurate account of active nodes that have (chunks of) F .

• P can join swarm, get a chunk for free, and then trade a 
copy of that chunk for another one with a peer Q also in the 
swarm
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So Far

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics



Edge-server architecture
Essence

Systems deployed on the Internet where servers are placed 

at the edge of the network: the boundary between enterprise 

networks and the actual Internet.
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Why edge?

Latency and bandwidth

• Especially important for certain real-
time applications, such as
augmented/virtual reality applications.

• Many underestimate the latency and
bandwidth to the cloud.

Reliability

• Connection to the cloud is often
assumed to be unreliable, which may 
be a false assumption.

• May be critical situations in which
extremely high connectivity
guarantees are needed.

Security and privacy

• The implicit assumption is often that
when assets are nearby, they can be
made better protected.

• Practice shows this is generally false.

• However, securely handling data 
operations in the cloud may be trickier
than within your own organization.
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Edge orchestration

Managing resources at the edge may be trickier than in 

the cloud

• Resource allocation: we need to guarantee the 

availability of the resources required to perform a 

service.

• Service placement: we need to decide when and where 

to place a service. This is notably relevant for mobile 

applications.

• Edge selection: we need to decide which edge infrastructure 

should be used when a service needs to be offered. The 

closest one may not be the best one.
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A little aside
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Photo by Hitesh Choudhary on Unsplash



Blockchain Basics
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Blockchain Basics

• Observations

• Blocks are organized into an unforgeable append-

only chain

• Each block in the blockchain is immutable ⇒  
massive replication

•The real snag lies in who is allowed to append a 

block to a chain
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• A single entity decides on which validator can go ahead 
and append a block.

• Does not fit the design goals of blockchains.

Appending a block: Centralized
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• A selected, relatively small group of servers jointly reach 

consensus on which validator can go ahead.

• None of the servers needs to be trusted, if ≈
2

3
 behave 

according to specification.

• In practice, only 10s of servers can be accommodated.

Appending a block: Distributed

Permissioned
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• Participants collectively engage in a leader election. Only 

the elected leader is allowed to append a block of validated 

transactions.

• Large-scale, decentralized leader election that is fair, robust, 

secure, etc. is not trivial.

Appending a block: Distributed

Permissionless
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Conclusion

• Definitions and Goals

• Architectural Styles

• System Architectures

• Peer to Peer

• Edge Computing

• Blockchain basics
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