
Course: Distributed Systems - Semester 1 of 5785
Assignment 1

Directions

A. Due Date: 1 December 2024 at 11:55pm

B. Groups of three (3) or four (4) students may submit this assignment.

C. Code for this assignment (Ass1) must be submitted via Github using the per-assignment private repos-
itory opened for you in the organization. More details on the repository are found below.

D. There are 100 points total on this assignment.

E. What to turn in:

(a) All source code and library files necessary to compile and run your programs

(b) Queue server design document

(c) Database design document

(d) Testing document

(e) Gradle build scripts

(f) README.md file with:

i. The name of the course, semester, and year

ii. The names and IDs of all students

iii. The task performed by each student

iv. The number of hours worked by each student on the tasks

General Requirements

1. All of the code below must be written in Java and compilable and executable with Java 19.

2. All code must have comments - each function must have an introductory comment detailing its purpose,
input parameters, and return value.

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

Parking System Stage 1: Communication
This semester we will build a system in three stages. The system will implement a number of use cases
related to a single story: a cellular parking system. The system will force you to deal with numerous aspects
of distributed systems including communication, data storage, communication, and synchronization.

1 User Story: Mulligan

We will build a system called Mulligan. Mulligan will have a front end and back end that are a simplified
version of Pango. The system will have a set of customers, parking spaces, parking zones, vehicles that will
be loaded up from an initialization file. A customer can begin parking in a parking space by sending a Start
message to the server. The customer can stop parking in a parking space by sending a Stop message to
the server. Each parking space is associated with a parking area that dictates how much the space costs
per hour. If a customer begins parking in a parking space, but hasn’t closed a previous parking event, the
system Stops the previous event automatically.

When the customer send a Stop message to the server, it generates a payment transaction that is sent to
the queuing service.

Parking Enforcement Officers (PEOs) can query the Mulligan system to see if a vehicle is parked legally in
a particular parking space. The query includes the vehicle number and the parking space number. Mulligan
will return a response Ok or Not Ok based on whether the vehicle is currently legally parked in the space.
If the vehicle is not legally parked in the space, the officer can write a parking ticket (citation/fine).

When the PEO issues is a citation, it generates a citation event that is sent to the queuing service. The
citation includes the vehicle number, the parking space number, the parking zone, and the time of inspection.

Municipalities can also use Mulligan to track payment transactions and citations. The municipality can
print out a list of payment transactions and issued citations.

A customer can request the list of past parking events that he performed from Mulligan, including the total
amount of money the customer has paid. The customer can then use that information to challenge a parking
ticket (citation/fine) that he received erroneously at the Municipality.

2 List of Actors

The following are the actors in the system:

Name Goal

Parking Customer To pay for parking a vehicle legally

Parking Enforcement Officer (PEO) To check whether vehicles are currently legally parked in a space

Municipal Officer (MO) To check whether a vehicle was legally parked in a space

3 Use Cases

The user story is short and covers only limited parts of what a real parking system will need to perform.
This semester we will implement the following use cases in the system. The use cases below do not cover all
of the Mulligan system’s needs. You’ll need to add functionality as required to support the use cases.

© Michael J. May Page 2 of 10 Kinneret College on the Sea of Galilee

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

System Use Case 1: Starting a Parking Event

Actors and interests: Parking Customer: To start a new parking event

Stakeholders:

Pre-conditions: The Parking Customer is logged in to the system

Post-conditions: Mulligan system created a new parking event for the Parking Customer’s vehicle
in a the given space in the Start state.

Trigger: Parking Customer selected “Start Parking” in the Mulligan customer app

MSS
1. Mulligan system shows a screen to enter the parking space number.
2. Parking Customer enters a parking space number
3. Mulligan system validates the parking space number.
4. Mulligan system ensures that there are no other parking events for the Cus-

tomer’s vehicle in the Start state.
5. Mulligan system starts a new parking event for the parking space with Cus-

tomer’s vehicle.
6. The Mulligan customer app shows a “Parking Started” message.

Branch A: Alternative from step 3 of the MSS: The parking space entered isn’t valid
3A1 Mulligan app shows an invalid parking space message.
3A2 Return to step 1 of the MSS.

Branch B: Alternative from step 4 of the MSS: There is another parking event for the cus-
tomer in the Start state.
4B1 Mulligan runs SUC-2 (Stopping a Parking Event) for the given customer.
4B2 Return to step 5 of the MSS.

© Michael J. May Page 3 of 10 Kinneret College on the Sea of Galilee

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

System Use Case 2: Stopping a Parking Event

Actors and interests:
� Parking Customer: To stop a parking event in the Start state
� Spontaneous: To automatically stop an parking event.

Stakeholders:

Pre-conditions: If the actor is the Parking Customer, the Parking Customer is logged into to the
system

Post-conditions: Mulligan system has stopped registering the Parking Customer’s vehicle as being
legally parked.

Trigger:
1. Parking Customer selected “Stop Parking” in the Mulligan customer app
2. Mulligan system detects that the customer has a Start parking event for

another space.

MSS
1. Mulligan system finds the currently Started parking event for the customer’s

vehicle.
2. Mulligan system stops the Started parking event with the end time being

the current time.
3. Mulligan app shows a “Parking Stopped” message.
4. Mulligan system issues a payment transaction event in the queuing system.

Branch A: Exception from step 1 of the MSS: There is no parking event for the customer’s
vehicle in the Start state
1A1 Mulligan system sends an error message that there is no open parking event
1A2 End of use case.

System Use Case 3: Retrieving list of parking events

Actors and interests: Parking Customer: To receive a list of previous parking events

Stakeholders: Municipality Officer: Let customers appeal parking tickets incorrectly received

Pre-conditions: The Parking Customer is logged in to the system

Post-conditions: The Parking Customer has received a list of parking events for his vehicle.

Trigger: Parking Customer selects “Get Parking Events List” on the Mulligan app

MSS:
1. Mulligan system checks its database for parking events for the customer’s

vehicle.
2. Mulligan app displays a table of parking events. For events that are stopped,

it shows the beginning time, end time, and parking space id. For events that
are not stopped, it shows beginning time and parking space id.

3. Mulligan app displays the total amount of money owed by the Customer for
all parking events.

Branch A: Exception from step 2 of the MSS: There are no parking events for the customer
2A1 Mulligan app shows a message that there are no events for the customer’s

vehicle.
2A2 Mulligan app shows a zero total amount of money owed.
2A3 End of the use case.

© Michael J. May Page 4 of 10 Kinneret College on the Sea of Galilee

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

System Use Case 4: Investigating parked vehicle

Actors and interests: Parking Enforcement Officer (PEO): To check if a vehicle is currently legally
parked

Stakeholders: Parking Customer: Ensure that if he started a parking event, he will not get a
ticket for the parking space

Pre-conditions: The Parking Enforcement Officer is logged in to the system

Post-conditions:
1. The PEO received a message whether the given vehicle is legally parked.
2. Mulligan recorded the query and its parameters in the system log.

Trigger: PEO selects “Check Vehicle” on the Mulligan PEO app

MSS:
1. PEO enters the vehicle number and parking space id into the Mulligan PEO

app
2. Mulligan system checks that the vehicle number and parking space id are

valid
3. Mulligan system finds a parking event for the vehicle in the given space that

is in the Start state and for which the maximum allowed parking time has
not passed.

4. Mulligan app shows a “Parking Ok” message to the PEO.
5. Mulligan system records the query information (current time and date, ve-

hicle number, parking space id, response) in the system log.

Branch A: Alternative from step 2 of the MSS: The vehicle number or parking space id are
not valid
2A1 Mulligan app shows an appropriate error message.
2A2 Return to step 1 of the MSS.

Branch B: Alternative from step 3 of the MSS: There is no parking event for the given vehicle
and parking space in the Start state.
3B1 Mulligan app shows a “Parking Not Ok” message to the PEO
3B2 PEO begins citation issuance use case (SUC-5)
3B3 Return to step 5 of the MSS.

© Michael J. May Page 5 of 10 Kinneret College on the Sea of Galilee

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

System Use Case 5: Citation Issuance

Actors and interests: Parking Enforcement Officer (PEO): Issue a citation for an illegally parked vehicle

Stakeholders: Municipality Officer: Ensure parking is paid for

Pre-conditions: PEO inspected a vehicle and received a Not Ok response

Post-conditions:
1. The PEO has issued a citation.
2. Mulligan recorded citation in the appropriate queue.

Trigger: PEO selects “Issue citation” on the PEO app

MSS:
1. PEO enters the vehicle number, parking space id, and citation cost in NIS
2. PEO adds current query time to the citation
3. Mulligan system sends a citation message in its queuing system

Branch A: Alternative from step 2 of the MSS: The vehicle number or parking space id are
not valid
2A1 Mulligan app shows an appropriate error message.
2A2 Return to step 1 of the MSS.

System Use Case 6: Parking Transaction Report

Actors and interests: Municipality Officer (MO): To see a report of all transactions

Stakeholders:

Pre-conditions: The Municipality Officer is logged in to the system

Post-conditions: The MO received a list of paid transactions.

Trigger: MO selects “Get Transaction Report” on the Mulligan MO app

MSS:
1. Mulligan system retrieves all transactions from the transaction queue
2. Mulligan app shows the list of transactions, including vehicle numbers, park-

ing space ids, parking zones, dates, start times, stop times, and amount of
money owed. For events that are in the Start state, the Stop time is left
blank.

Branch A: Alternative from step 2 of the MSS: There are no parking events
2A1 Mulligan app shows an empty list to the MO
2A2 End of use case

© Michael J. May Page 6 of 10 Kinneret College on the Sea of Galilee

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

System Use Case 7: Parking Citation Report

Actors and interests: Municipality Officer (MO): To see a report of all citations

Stakeholders:

Pre-conditions: The Municipality Officer is logged in to the system

Post-conditions: The MO received a list of citations.

Trigger: MO selects “Get Citation Report” on the Mulligan MO app

MSS:
1. Mulligan system retrieves all citations from the citation queue
2. Mulligan app shows the list of citations, including vehicle numbers, parking

space ids, parking zones, dates, inspection times, and amount of money
owed.

Branch A: Alternative from step 2 of the MSS: There are no citations
2A1 Mulligan app shows an empty list to the MO
2A2 End of use case

4 System Architecture

The system architecture is distributed and consists of several computers:

Node Task

Customer mobile Computer the customer uses to start and stop parking

PEO mobile Computer the PEO uses to inspect vehicles and issue citations

Mulligan DB server Database server that stores started and stopped parking records

Queue server Receives updates about completed (stopped) parking transactions and issued cita-
tions. Manages 2 queues, one for completed transactions and one for citations.

Municipality PC Allows MO to generate reports about completed transactions and issued citations.
Interacts with the Queue server

The physical and logical architectures for Mulligan are shown in Figures 1 and 2.

4.1 Message Broker

Mulligan will use RabbitMQ as a message broker between Customers, PEOs, and MOs. RabbitMQ (https:
//www.rabbitmq.com/) is an open source and free message broker system used in many projects across
the industry. Part of the learning outcomes for this assignment will be gaining familiarity with building a
simple RabbitMQ server, two queues, producers, and consumers. You can find lots of online tutorials for Java,
including a few walkthrough tutorials at https://www.rabbitmq.com/tutorials/tutorial-one-java that
should suffice for this assignment.

© Michael J. May Page 7 of 10 Kinneret College on the Sea of Galilee

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/tutorials/tutorial-one-java

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

Figure 1: Mulligan deployment diagram

5 Step 1: First build with communication

In the first step of the assignment, you will implement the use cases above using the architecture shown in
Figure 1. There are four major tasks to be performed here. They are designed to be distributed to four
different people in your team. Each team must specify who took each task. Each individual will be given a
personal grade for their part in the work as well as a collective team grade for the collective effort. In future
iterations, team members will swap task roles, so be sure that everything is documented clearly and written
cleanly.

5.1 Task 1: User Interfaces

There are 3 user interfaces on the client side:

1. The Customer UI

2. The PEO UI

3. The MO UI

What to do: Build the three apps’ user interfaces using Java FX. The mockups should have clickable
buttons and fields and offer functionality using a Controller class.

© Michael J. May Page 8 of 10 Kinneret College on the Sea of Galilee

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

Figure 2: Mulligan logical architecture

5.2 Task 2: Queue Server

The queue server must include a RabbitMQ server instance and 2 queues, one for transactions and one for
citations. The server must accept messages from the customer and PEO UIs and route them to the correct
queues.

What to do:

1. Build the server using RabbitMQ and two queues

2. Make the server available to work with the UIs.

5.3 Task 3: Database and Storage

The database server must store information about vehicles, parking spaces, parking zones, and parking
events. Create a database with tables or documents that support that. Add sample data with at least 10
vehicles, 10 parking zones with various parking costs, and 100 parking spaces.

Create queries and retrieval mechanisms to allow the PEO and customer UIs to store and retrieve data.

What to do:

1. Create the database and schemas

2. Insert the sample data

3. Write queries as necessary for the UIs to work

4. Create a design document for the database, including the schemas used and important queries.

© Michael J. May Page 9 of 10 Kinneret College on the Sea of Galilee

Distributed Systems Semester 1 of 5785, Assignment 1 Due: 1 December 2024 at 11:55pm

5.4 Task 4: Documentation, DevOps, Build and Test

Document all classes with JavaDoc. Write meaningful comments on all classes and public methods.

The clients and server will be stored in GitHub and written in Java. Prepare the foundation projects in the
GitHub repository so that they can be built automatically and tested automatically as much as possible.

To ensure correctness, you will write unit tests for all public and protected methods. Each unit test must
include success and failure boundary tests.

Prepare test scripts for testing each use case listed above.

What to do:

1. Document all classes and public methods with Javadoc.

2. Create a design document for how the queue server operates, including decisions about how events are
built, how routing is done, and how it interacts with the clients and other servers.

3. Create the GitHub repository for the team and put in Java projects for the client apps and the servers.

4. Create GitHub actions that build each project automatically.

5. Create JUnit tests for all public and protected methods.

6. Create a testing plan that has acceptance tests. The testing plan must consist primarily of tables
with the following columns. The row shown here is a sample. Remove it and replace with your
actual information. Create a table for each of the use cases above, covering the MSS, pre-condition,
post-conditions, and all branches.

Artifact Tested Pre-conditions Test Steps Expected Result Passed?

1 Customer app Customer logged
in (a) Click on Stop

Parking
(b) . . .

Parking stopped
shown

Yes

2

6 For 3 person teams

If your team has only 3 people, distributed the documentation and DevOps task among the team members
appropriately. The UI person should write the documentation and unit tests for the UIs. The queue server
person should write the documentation and tests for the queue server. The database person should write
the tests and documentation for the database.

7 Submission and Grading

Submit all of your work using the repository opened for you in GitHub Classroom. Submit all documents
and code in the repository.

Grading:

1. 50% individual work on the task per person

2. 50% overall group grade

© Michael J. May Page 10 of 10 Kinneret College on the Sea of Galilee

	User Story: Mulligan
	List of Actors
	Use Cases
	System Architecture
	Message Broker

	Step 1: First build with communication
	Task 1: User Interfaces
	Task 2: Queue Server
	Task 3: Database and Storage
	Task 4: Documentation, DevOps, Build and Test

	For 3 person teams
	Submission and Grading

