UDP, TCP, Congestion
Control, Glue Protocols

4 January 2026
Lecture 10

Some Slides Credits: Steve Zdancewic (UPenn)

4 Jan 2026 SE 331: Introduction to Computer Networks

Topics for Today

- UDP
- TCP

— Handshake and Basics
— Congestion Control

Glue Protocols
— |ICMP

Sources in PD:

— UDP: 5.1

— TCP: 5.2

— TCP Congestion Control: 6.3
— ICMP: 3.2.8

4 Jan 2026 SE 331: Introduction to Computer Networks

Protocol Stack Revisited

Application

Presentation

Session

Transport | UDP and TCP/IP

\

Network

Data Link > So far...

Physical

4 Jan 2026 SE 331: Introduction to Computer Networks

Application vs. Network

Application Needs

Network Characteristics

Reliable, Ordered, Single-
Copy Message Delivery

Drops, Duplicates and
Reorders Messages

Arbitrarily large messages

Finite message size (MTU)

Timely receipt of messages

Arbitrary delay

Supports multiple
applications per host

Host-level addressing and
delivery mechanisms (no
ability to discern
conversations)

Flow control by Receiver

No end-to-end flow control
mechanisms

4 Jan 2026

SE 331: Introduction to Computer Networks

User Datagram Protocol (UDP)

SrcPort DestPort

Length ‘ Checksum

IP Packet Data

« Simplest transport-layer protocol
« Just exposes IP packet functionality to application level

« Ports identify sending/receiving process
— Demultiplexing information
— (port, host) pair identifies a network process

Question: Why is there another length field?

4 Jan 2026 SE 331: Introduction to Computer Networks

UDP End-to-End Model

« Multiplexing/Demultiplexing with Port number

Application
I

UDP Sender
(Multiplexer)

UDP Receiver
(Demultiplexer)

oo

4 Jan 2026

SE 331: Introduction to Computer Networks

Using Ports

* Client contacts Server at a well-known port
— SMTP: port 25
— DNS: port 53
— POP3: port 110
— HTTP: port 80
— Unix talk : port 517
— In unix, ports are listed in /etc/services
— In Windows: C:\Windows\System32\drivers\etc\services

« Client and Server agree on a different port for subsequent
communication

* Ports are an abstraction
— Implemented differently on different OS’s
— Typically a message queue

4 Jan 2026 SE 331: Introduction to Computer Networks 7

So Far

. UDP
- TCP

— Handshake and Basics
— Congestion Control

* Glue Protocols
— ICMP

4 Jan 2026 SE 331: Introduction to Computer Networks

Transmission Control Protocol (TCP)

* Most widely used protocol for reliable byte streams
— Reliable, in-order delivery of a stream of bytes
— Full duplex: pair of streams, one in each direction
— Flow and congestion control mechanisms
— Like UDP, supports ports

 Built on top of IP (hence TCP/IP)

4 Jan 2026 SE 331: Introduction to Computer Networks

TCP End-to-End Model

« Buffering corrects errors but may introduce delays

TQ

S¢g

Sender:
Buffers

S

4 Jan 2026

SE 331: Introduction to Computer Networks

10

Packet Format

o Flags * Fields
— SYN 0 15 31
— FIN Source Port | Destination Port
— RESET Sequence Number
— PUSH Acknowledgement
— URG HL |0 |Flags |Advertised
— ACK Window
Checksum Urgent Pointer
Options (variable)
Data

4 Jan 2026 SE 331: Introduction to Computer Networks 11

LT g
A0 R
fles BRNh
a'all Y -

Three-Way Handshake v

B CO L.

Active participant Passive participant
(client) (server)

4 Jan 2026 SE 331: Introduction to Computer Networks 12

TCP State Transitions (1/2)

starting point
CLOSED
. -0
1
!
appl: passive open :
send: <nothing> :
'
timeout _
send: | R5T LISTEN

passive open

recv: SYN

T : v ooty appl dose
(Sy ra._nt.w}. — SYN_SENT }—r—n
. simultaneous open active open

L]
-l'i:"} '\ﬁ-ﬁr-.
I:"lﬂ-':- \Iﬁfr
>R
J_.‘r?}‘
AN l ________
appl:| close } recv: FIN | .
<ond: | FIN STABLISHED - ey -{ CLOSE_W: "L}T)
4 Jan 2026 SE 331: Introduction to Computer Networks 13

TCP State Transitions (2/2)

e e —— . — -

appl:| close

recv: FIN
send: | FIN STABLISHED o em e m I...@LD-:;E Wi m")

send:

data transfer srar.ﬂ

appl:jclose
send: : FIN

—_— e = e = = e — —

1
¥ simultaneous close | ' ACK
- | recv: AC
(FIN_WAIT I — d w}.. »{ CLOSING) : ((LAST_ACK ;5"“ =i
i I s .|
L. »n [passive close
recv:jACK RN recv: |[ACK :
send:<nothing> ?ﬁ? N/a send: | <nothing>
N I
|
|
|
I

(Fm WAIT 2

artve rlnse

4 Jan 2026 SE 331: Introduction to Computer Networks 14

TCP State Transitions

starting point
{ CLOSED)

timeout
send: | RST

g N———

]

!

appl: passive open :
send: <nothing> :

)

appl: | close
send: | FIN

FIN_WAIT _1

recv] ACK
send: |<nothing=

{ FIN_WAIT 2

I |

- simultaneous open

send: SYN, ACK

F-———===-
|

STABLISHE
data transfer state H
.
: appl:gclose
| .».x-nti:ll-'] N
i ! 1
simultaneous close i
I
I
i

CLOSING } LAST ACK

passive close
recy: |ACK
'4}(\ send: | <nothing>

recv: FIN | ,
--M._[:’:-r\-ﬂ(-:-.{ CLOSE_WAIT

: appl: close
or timeout

9
I
I
I
I

, recv: ACK
: send; <nothin 2>

TIME wArr:}

active clnse

ZMSL timeput

U

4 Jan 2026

SE 331:

Introduction to Computer Networks

15

Two Flags

URG A\

« Sender has urgent data

SYN

FIN

RST

PSH

URG

ACK

1

Urgent Pointer =100

Byte# [0 (100 [101 | 500
Urgent | Other
Data Data

* Recipient’'s TCP forwards
the data to the app with

priority

PUSH -

« Small critical piece of
data to send

 Sender sets PUSH bit

 Result:

— Sender’'s TCP sends the
data immediately (don’t

buffer until it's close to
MTU)

— Receiver's TCP sends the
data to the app
immediately, not buffering

4 Jan 2026

SE 331: Introduction to Computer Networks

16

TCP Sender and Receiver

TCP Receiver TCP Sender
Maintains an input buffer for the Maintains a sending
application buffer
Application sees only in-order, _ _ _ .
correct bytes ° Send|ng appl|Cat|On IS
Advertises aw = (bsize — filled) blocked until room in the
as advertised window for sliding buffer for its write
window

+ Sliding window stores

h ' i
Keeps track of bytes that arrived data until acknowledged

ok (ackBytes)

Responds with ackBytes and aw by receiver
on each send « Sliding window expands
If aw = 0, no more space and contracts dynamically

Typically sent with a scaling factor e aw affects size

4 Jan 2026 SE 331: Introduction to Computer Networks 17

Simple advertised window interaction

llustration of Window Advertisement

Sender Events Receiver Events

— advertise window=2500

send data octets 1-1000 —ja-
send data octets 1001-2000 —

— ack up to 2000, window=500

receive ack for 1000 — | ack up to 2500, window=0

receive ack for 2000 —
receive ack for 2500 —]

— application reads 2000 octets
+— ack up to 2500, window=2000

send data octets 2501-3500 —

send data octets 3501-4500 —
— ack up to 3500, window=1000

— ack up to 4500, window=0
receive ack for 3500 —

receive ack for 4500 —

— application reads 1000 octets
_—4— ack up to 4500, window=1000

receive ack for 4500 —}=— Image Source: Chegg.com

https://media.cheggcdn.com/media/2c5/2c5¢cc97¢c-eb97-4376-
b57d-0257161bf650/php3ADfPM.png

4 Jan 2026 SE 331: Introduction to Computer Networks 18

So Far

. UDP
. TCP

— Handshake and Basics
— Congestion Control

 Glue Protocols

4 Jan 2026

SE 331: Introduction to Computer Networks

19

TCP Flow & Congestion Control

* Flow vs. Congestion Control

— Flow control protects the recipient from being
overwhelmed (aw)

— Congestion control protects the network from being
overwhelmed.

 TCP Congestion Control

— Additive Increase / Multiplicative Decrease
— Slow Start
— Fast Retransmit and Fast Recovery

4 Jan 2026 SE 331: Introduction to Computer Networks 20

TCP versus UDP Sending

Legend:
---- UDP Sending
---- TCP Sending

f

|||||||||||||||||||||||||||||||||
........

4 Jan 2026

SE 331: Introduction to Computer Networks

TCP Slow Start

If we initialize cw to the sender’s
desired window size and start sending
the entire window at once, it could
cause immediate network congestion

Instead, start “slowly” by setting cw =
2 packets (minimum 576B)

When an ACK arrives, increase by the
number of packets acknowledged
(effectively cw *= 2 each RTT)

Continue until ACKs do not arrive or
flow control dominates.

e SWS = min(cw, aw)

4 Jan 2026 SE 331: Introduction to Computer Networks

A

/\

0

0
\

0

!

0
0

0
0

Q

|

|
i

0

Slow Start lllustrated

Fig. 2. Exponential growth of congestion window during slow start phase (Wang et al., 2014).

cwnd =1 [l

cwnd = 2, (Eq. 2) I
(Eq. 1) CIT-T1
—» cwnd =4, (Eq. 2) NI

Exponential
grwoth of cwnd

Ea.) [T T T T1

(Eq.1) CIT T T T 11

(Eq.1) CIL T T T T 11

cwnd = 8, (Eq. 2) (RIS

Source Host

RTT1

RTT2

RTT3

Destination Host

ACK for Pkt. 1

ACK for Pkt. 2

ACK for Pkt. 7

Pkt: Packet
ACK: Acknowledgement

v Eq1: cwnd=cwnd +1

Eq2: cwnd=cwnd x 2

Time cwnd: Congestion Window

4 Jan 2026 SE 331: Introduction to Computer Networks

23

https://www.sciencedirect.com/science/article/pii/S2210670717307126#bib0235

TCP Congestion Control Varieties

| Image credits: https://www.redbubble.com, ebay.com, http://gclipart.com/clipart-potato_8434/ |

« Tahoe (older)
per packet
timers

* Reno (Coming Up) uses selective

 Vegas: very dlfferent

« SACK: Very different,

acknowledgments
— What arrived — ranges
* New Reno (bit of noncumulative
different) ACKs

— How to deal with
multiple drops and
reordering

4 Jan 2026 SE 331: Introduction to Computer Networks

https://www.redbubble.com/

W TCTOE

SN0

Image source: cafepress.com

4 Jan 2026

SE 331: Introduction to Computer Networks

25

Reno AIMD

Variable CongestionWindow (cw) is used to
control the number of unacknowledged
transmissions (in addition to aw)

cw is increased linearly each RTT until timeouts
for ACKs are missed.

When an ACK is missed, cw is decreased by half
(cw *= 0.5) to reduce the pressure on the
network quickly.

Called “additive increase / multiplicative
decrease’.

)

4 Jan 2026 SE 331: Introduction to Computer Networks

26

Qf TCP Sawtooth Pattern

KB

/\/W

Time

4 Jan 2026

27

TCP CUBIC i

* Meant for Long W(t) = C(t — K)* + Winaa (1)
Latency H Igh where C' is a CUBIC parameter, t is the elapsed time from

the last window reduction, and K is the time period that the

B andWIdth above function takes to increase W to Wi,a. when there is
no further loss event and is calculated by using the following
: equation:
— Think cloud —
K — 3 max 9
C (2)

* |nstead of AIMD drop
by 50% —> Drop by
20%

 Window increase
based on:

ﬁ - O . 2) C - O 4 Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly high-speed TCP
variant. SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 64—74.

https://doi.org/10.1145/1400097.1400105

4 Jan 2026 SE 331: Introduction to Computer Networks 28

TCP CUBIC’s Graph i

https://www.noction.com/blog/tcp-transmission-control-protocol-congestion-control

Max Probing
Packet Loss CONVEX
Event
Cubic starts probing
for more Bandwidth
TIME
Around Wmax,
Fast growth _ window growth
upon reduction almost becomes zero
Steady State
Behavior
CONCAVE

4 Jan 2026 SE 331: Introduction to Computer Networks 29

Congestion Control Algorithms

Operating System/System Default TCP Congestion Control Algorithm
MacOS TCP CUBIC

Microsoft Windows TCP Compound

Linux TCP CUBIC

Sun Solaris TCP Fusion

YouTube (Google) TCP BBR

Android TCP CUBIC

iI0S TCP CUBIC

Amazon CloudFront TCP BBR

Facebook COPA (?) over QUIC

4 Jan 2026

SE 331: Introduction to Computer Networks

30

Al for Congestion Control?

1.6 -

1.4

i 0O ®) XCP
Cubic/sfgCoDel

1L Cubic O

" Compound

1.2

0=10

Throughput (Mbps)

- NewReno©
' OvVegas

|] | |
32 16 8 4 2 1
Queueing delay (ms)

Figure 4: Results for each of the schemes over a 15 Mbps dumb-
bell topology with n = 8 senders, each alternating between flows
of exponentially-distributed byte length (mean 100 kilobytes)
and exponentially-distributed off time (mean 0.5 s). Medians
and 1-o ellipses are shown. The blue line represents the effi-
cient frontier, which here is defined entirely by the RemyCCs.

https://web.mit.edu/remy/TCPexMachina.pdf

TCP ex Machina: Computer-Generated Congestion Control

An Experimental Study of
the Learnability of Congestion Control

Remy is a computer program that figures out how computers can best
cooperate to share a network.

Remy creates end-to-end congestion-control algorithms that plug into the
Transmission Control Protocol (TCP). These computer-generated
algorithms can achieve higher performance and greater fairness than
the most sophisticated human-designed schemes.

4 Jan 2026 SE 331: Introduction to Computer Networks 31

TCP: Fast Retransmit

» Lone packet losses can slow down Sender Receiver
transmission Packet 1
Packet 2
Packet 3 ACK 1
* The timeout must be reached and it's likely . e 4 T ACK 2
that the connection will go dead if the SWS
or Congestion Window is reached Packet 5 ACK 2
Packet 6
ACK 2
ACK 2

Retransmit
packet 3

ACK 6

4 Jan 2026 SE 331: Introduction to Computer Networks 32

TCP: Fast Retransmit

» Alternative: Fast Retransmit Sender Recelver
. . Packet 1
— Send cumulative ACKs aswe sawin ..,
. g . Packet 3 ACK 1
Sliding Wlndow | | P;k:; — o
— If 3 duplicate ACKs arrive, retransmit
the next one missing Packet 5 ACK2
— Duplicate ACK means packets with no data, Packet 6 .
ACKing something already ACK'd and with Ack 2
same aw ACK 2

— Can increase throughput by 20% Retransmit

— Doesn’t solve all the problems (if packet?
SWS is small or during Slow Start)

ACK 6

4 Jan 2026 SE 331: Introduction to Computer Networks 33

So Far

- UDP
. TCP

— Handshake and Basics
— Congestion Control

 Glue Protocols

4 Jan 2026

SE 331: Introduction to Computer Networks

34

"Glue" Protocols

 Need some way to handle error conditions

 Need some way to map addresses at one level to
addresses at another level.
— Example: Machine addresses (Ethernet) to IP addresses

 Need someway to provide IP addresses
— What about computers entering/leaving?

 Need some way to provide human-readable addresses
— So you can write www.kinneret.ac.il instead of 212.150.112.29

4 Jan 2026 SE 331: Introduction to Computer Networks 35

|ICMP: Internet Control Message Protocol

« Collection of error & control messages

« Sent back to the source when Router or Host cannot
process packet correctly
* Error Examples:
— Destination host unreachable
— Reassembly process failed
— TTL reached O
— |P Header Checksum failed
« Control Example:
— Redirect — tells source about a better route

SAOO

4 Jan 2026 SE 331: Introduction to Computer Networks

36

ICMP Sample Trace

No. Time Source Destination Protocol Length Info
155 22.572657000 10.0.0.3 64.233.166.160 ICMP 106 Echo (ping) request 1id=0x0001, seq=44/11264, ttl=1 (no response found!)
.573156000 .0.1 ICMP 134 Time-to-live exceeded (Time to live exceeded in transit)
157 22.627346000 10.0.0.3 64.233.166.160 ICMP 106 Echo (ping) request id=0x0001, seq=45/11520, ttl=1 (nho response found!)
22.628191000 .0.138 .0.0.3 134 Time-to-1live exceeded (Time to live exceeded in transit)
159 22.628941000 10.0.0.3 64.233.166.160 ICMP 106 Echo (ping) request 1d=0x0001, seq=46/11/76, ttl=1 (ho response found!)

{1

= Frame 155: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface 0

= Ethernet II, Src: Dell_e6:7f:66 (44:a8:42:e6:7f:66), Dst: D-Link_75:8a:ab (00:22:b0:75:8a:ah)
@ Internet Protocol Version 4, Src: 10.0.0.3 (10.0.0.3), Dst: 64.233.166.160 (64.233.166.160)
= Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: 0
Checksum: 0xf7d2 [correct]
Identifier (BE): 1 (0x0001)
Identifier (LE): 256 (0x0100)
Sequence number (BE): 44 (0x002c)
Sequence number (LE): 11264 (0x2c00)
@ [No response seen]
= Data (64 bytes)

4 Jan 2026 SE 331: Introduction to Computer Networks 37

Conclusion

- UDP
- TCP

— Handshake and Basics
— Congestion Control

 (Glue Protocols

4 Jan 2026 SE 331: Introduction to Computer Networks

38

	Default Section
	Slide 1: UDP, TCP, Congestion Control, Glue Protocols 4 January 2026 Lecture 10
	Slide 2: Topics for Today

	UDP
	Slide 3: Protocol Stack Revisited
	Slide 4: Application vs. Network
	Slide 5: User Datagram Protocol (UDP)
	Slide 6: UDP End-to-End Model
	Slide 7: Using Ports

	TCP Basics
	Slide 8: So Far
	Slide 9: Transmission Control Protocol (TCP)
	Slide 10: TCP End-to-End Model
	Slide 11: Packet Format
	Slide 12: Three-Way Handshake
	Slide 13: TCP State Transitions (1/2)
	Slide 14: TCP State Transitions (2/2)
	Slide 15: TCP State Transitions
	Slide 16: Two Flags
	Slide 17: TCP Sender and Receiver
	Slide 18: Simple advertised window interaction

	TCP Congestion Control
	Slide 19: So Far
	Slide 20: TCP Flow & Congestion Control
	Slide 21: TCP versus UDP Sending
	Slide 22: TCP Slow Start
	Slide 23: Slow Start Illustrated
	Slide 24: TCP Congestion Control Varieties
	Slide 25
	Slide 26: Reno AIMD
	Slide 27: TCP Sawtooth Pattern
	Slide 28: TCP CUBIC
	Slide 29: TCP CUBIC’s Graph
	Slide 30: Congestion Control Algorithms
	Slide 31: AI for Congestion Control?
	Slide 32: TCP: Fast Retransmit
	Slide 33: TCP: Fast Retransmit

	Glue Protocols
	Slide 34: So Far
	Slide 35: "Glue" Protocols
	Slide 36: ICMP: Internet Control Message Protocol
	Slide 37: ICMP Sample Trace
	Slide 38: Conclusion

