
© Prof. Amir Tomer

2
9

 M
ay

 2
0

2
5

Lecture 9 1

Engineering Software Intensive Systems

Process Design

Functional/Logical Architecture

Lecture 9

29 May 2025

Slides created by

Prof Amir Tomer
tomera@cs.technion.ac.il

ID 161250385 © Drawlab19 | Dreamstime.com

mailto:tomera@cs.technion.ac.il

© Prof. Amir Tomer

Topics for Today
• Process Design

– Sequence Diagrams

• Software Interfaces

– Component interfaces

– Logical architecture

2
9

 M
ay

 2
0

2
5

Lecture 9 2

© Prof. Amir Tomer

Planning Processes

• Our goal: Define interactions between element groups to implement the system’s
processes

• Inputs:

– System processes (UC)

– Functional requirements from the
requirements table

– Activity diagrams

– List of software elements in the system
(from functional analysis)

• Outputs:

– Sequence diagrams

2
9

 M
ay

 2
0

2
5

Lecture 9 3

[Software architecture: Processes]

© Prof. Amir Tomer

System Architecture: SIS architecture includes

Lecture 9 4

2
9

 M
ay

 2
0

2
5

1. Physical architecture: Hardware components and physical connections – static model (structure)

2. Logical architecture: Software components and logical connections – static model (structure)

3. Process architecture: Implementation of processes via interaction between components - dynamic

model (behavior)

4. Composite architecture: Implementation of logical connections via physical connections – static

model (structure)

SIS

HW
Element

HW
Element

SW
Element

SW
Element

.

1. Physical architecture2. Logical architecture - components

4. Composite architecture and deployment of SW on HW

3. Process architecture

Processes (Use Cases)

© Prof. Amir Tomer

Implementing system processes via functional components

• Functional components are the task force that will perform the

system processes

– System processes = Use Cases

– Every component is assigned a functional task

– Components interact to perform the system processes

1. Interactions between components (internal)

2. Interactions between components and the environment

(external)

2
9

 M
ay

 2
0

2
5

Lecture 9 5

© Prof. Amir Tomer

Sequence diagram
• Describes the process as an interaction between components

– Internal elements in the system (subsystems, computers, components, objects)

– External entities (primary/supporting actors, external elements)

2
9

 M
ay

 2
0

2
5

Lecture 9 6

Internal
Element A

Primary actor

Internal
Element B

Supporting actor

1.2 Msg C

Asynchronous call to
perform h

Lifeline

Activation
1.0 Msg A

Asynchronous call to
perform f

f g

h

1.1 Msg B

Synchronous call to
perform g

1.4 Response B

Response from doing g
1.5 Msg D

Asynchronous
response to doing f

1.3
Message to
self

Internal call to perform
k

k

© Prof. Amir Tomer

Interaction Frames
• Fragments of the sequence diagram that show some nesting or control blocks

within the sequence. Operators:

2
9

 M
ay

 2
0

2
5

Lecture 9 7

operator + name

[condition/guard]
Interaction

seq:

• Frame that names a set of steps
that must be completed before
proceeding

• Like <<include>>-ing a use case
within the sequence diagram, set
can also be performed on its own

ref

• References another sequence
diagram

par

• Run more than one block in
parallel

loop

• A loop

• Remember to write the loop
condition

alt

• Like an if-then-else or switch
statement

• Remember to write the condition

opt

• Like an if-then statement

• Remember to write the condition

© Prof. Amir Tomer

Sample sequence diagram with control blocks
2

9
 M

ay
 2

0
2

5

Lecture 9 8

© Prof. Amir Tomer

Refining the elevator example

Single car operations

1. Receive user requests from in-car

floor buttons

2. Receive requests from central

operations

3. Managing travel plan

4. Engine control (travel, stop)

5. Door control (open, close)

2
9

 M
ay

 2
0

2
5

Lecture 9 9

Command and
Control for Single

Car

© Prof. Amir Tomer

Refining the elevator example

Whole system operations

1. Receive user requests from per-floor up/down buttons

2. Assigning calls to elevator cars

3. Sending calls to elevator cars

4. Identify emergency events and take care of rescue
operations

5. Built in Test (BIT)

6. Support technician tests

7. Support technician repair tasks

8. Start up

9. Shut down

10. Sabbath mode

2
9

 M
ay

 2
0

2
5

Lecture 9 10

System Command
and Control

System Maintenance

Configuration
Management

© Prof. Amir Tomer

SUC-1 Call Elevator
SUC-1 Call Elevator

Actors and

Goals

Passenger: To receive an elevator car available for travel

Stakeholders

and Interests

None

Pre-conditions • User is on a floor in the building with an elevator door

• System is operational (post-condition of UC: Start-up)

Post-

conditions

An elevator car is at the user’s floor with the door open (destination floor)

Trigger Passenger pushes the up or down button on the floor

Main Success

Sequence

(MSS)

1. The system records the button press

2. The button lights up

3. The system finds a car traveling in the desired direction

4. The system assigns a stop for the car

5. The elevator arrives at the floor

6. The door opens

7. The floor button turns off

Branch A Alternative from step 2 of MSS: The button is already lit

2A1. Return to step 5 of the MSS.

Requirements

trackback

…

2
9

 M
ay

 2
0

2
5

Lecture 9 11

These steps take place in parallel

© Prof. Amir Tomer

Sequence diagram: SUC-1 Call Elevator
2

9
 M

ay
 2

0
2

5

Lecture 9 12

MSS steps
1-4

MSS steps
5-7

© Prof. Amir Tomer

SUC-2 Ride Elevator

Actors and

Goals

Passenger: To arrive at the desired floor

Stakeholders

and Interests

Safety standards: Ensure passengers are not stuck in elevators

Pre-conditions • User is in an elevator car

• System is operational (post-condition of UC: Start-up)

Post-

conditions

• Car arrives at the desired floor (destination)

• Passengers can leave the elevator (interest)

Trigger Passenger pushes the button for the desired floor

Main Success

Sequence

(MSS)

1. The car records the button pressed and adds a scheduled stop at the floor

2. The button lights up

3. The car door closes (if it was open)

4. The car continues traveling to the next floor in its stop list

5. The car stops at the floor

6. The door opens

7. The floor’s light turns off

8. Return to step 3.

SUC-2 Ride Elevator
2

9
 M

ay
 2

0
2

5

Lecture 9 13

These steps occur in parallel to

the rest of the UC

© Prof. Amir Tomer

SUC-2 Ride Elevator
SUC-2 Ride Elevator

Branch A Exception from step 4 of the MSS: Passenger presses the emergency stop button

4A1. The car immediately stops

4A2. The car cancels all upcoming planned stops

4A3. End of use case

Branch B Exception from step 4 of the MSS: Car gets stuck

4B1. Call for rescue is issued (transfer to SUC-3 that extends)

Requirements

trackback

…

2
9

 M
ay

 2
0

2
5

Lecture 9 14

© Prof. Amir Tomer

Sequence Diagram for SUC-2 Ride Elevator
2

9
 M

ay
 2

0
2

5

Lecture 9 15

Steps 1-2 of the MSS

Branch A

Steps 3-8 of the MSS

References sequence
diagram on another slide

© Prof. Amir Tomer

Sequence Diagram: Elevator regular operation
2

9
 M

ay
 2

0
2

5

Lecture 9 16

Steps 3-8 of the
MSS

Branch B

ref

Travelling between Floors

© Prof. Amir Tomer

SUC-3 Rescue
SUC-3 Rescue

Actors and

Goals

Passenger: To be rescued from a stuck elevator

Rescuer: Supporting actor (helps rescue)

Stakeholders

and Interests

Safety standards: Ensure passengers are not stuck in elevators

Pre-conditions • Car is stuck (got stuck while traveling, extending SUC-2)

Post-

conditions

• Passenger can exit the car (goal + interest)

Trigger Passenger calls for rescue

Main Success

Sequence

(MSS)

1. The system calls the rescuer

2. The rescuer goes to the machine room and starts “rescue” mode

3. The elevator arrives at the ground floor

4. The door opens

Branch None

Requirements

Trackback

…

2
9

 M
ay

 2
0

2
5

Lecture 9 17

© Prof. Amir Tomer

Sequence diagram form SUC-3: Rescue
2

9
 M

ay
 2

0
2

5

Lecture 9 18

© Prof. Amir Tomer

In class task: Implement a UC via sequence diagrams

• Create sequence diagrams to implement 3 of the ePark use

cases

• Use the components created in the previous in class

assignment

2
9

 M
ay

 2
0

2
5

Lecture 9 19

© Prof. Amir Tomer

So Far
• Process Design

– Sequence Diagrams

• Software Interfaces

– Component interfaces

– Logical architecture

2
9

 M
ay

 2
0

2
5

Lecture 9 20

© Prof. Amir Tomer

Planning Software Architecture Activities

• Our goals:

– Define the structure (organization and interfaces) of software components

– Show how logical interfaces (software) work with physical interfaces (hardware)

• Inputs:

– Software components and

processes (Sequence diagrams)

– Deployment diagram

• Outputs:

– Component diagram (logical and

functional architecture)

2
9

 M
ay

 2
0

2
5

Lecture 9 21

[Software architecture: Structure]

© Prof. Amir Tomer

Functional components
Functional components (logical, software)

• Can perform one or more operation

(provide services)

• Has 1+ interfaces through which other

components or external entities can start

the functionality (others receive services)

– With or without sending information

• Can run operations on other entities or

components

• Doesn’t constrain implementation choices

(many ways to implement)

Component is a functional black box to others

• Outsiders can probe the component’s

functional readiness via input/output

• Can measure its performance externally

only

• Can be replaced with other components

with identical input/output specifications

and behavior

2
9

 M
ay

 2
0

2
5

Lecture 9 22

© Prof. Amir Tomer

Functional Interfaces (Software Interfaces)
• Components interact with environment (other components or

external entities) via two types of interfaces

1. Provided interfaces (provided by the component)

– Examples:

2
9

 M
ay

 2
0

2
5

Lecture 9 23

Component

A
Component

B

Provides

service
Needs

service

Public methods

• name, parameters,
return type

• Application
Program Interface – API

SQL query interface

Infra-red (IR) bar
code scanning

• 1d or 2d

Accept uploaded
files

Dialog box HTML form

© Prof. Amir Tomer

Functional Interfaces (Software Interfaces)
• Components interact with their environment (other components or external entities) via

two types of interfaces

2. Required Interface (component needs service from another component)

– Calls other components via their provided interfaces

– Examples:

• Same as before, just the other way around (except for user interfaces)

2
9

 M
ay

 2
0

2
5

Lecture 9 24

Component

A
Component

B

Provides

service
Needs

service

© Prof. Amir Tomer

Interfaces between connected components

• When components are modules in the same software (compiled or linked together)

– Call the API via direct method call (e.g. using a static library)

2
9

 M
ay

 2
0

2
5

Lecture 9 25

HelloWorld.c

#include <stdio.h>

int main()
{

 ...
 printf(“Hello World”);
}

stdio.h

int printf(const char *format, ...)
{
 ...

 ...
}

Provides service of printing to the screenRequires service of printing to the screen

© Prof. Amir Tomer

Interfaces between components in the same environment

• Components are in the same run time environment (e.g. OS)

– Call via an agreed upon interface (e.g. using a dynamic link library DLL)

2
9

 M
ay

 2
0

2
5

Lecture 9 26

DynamicLibrary.dll

...

void DllMethod(...)
{
 ...
 ...
}

MyProg.java

// Get DLL handle
 int DllHan = DllLib.DLLGetHandle(“DynamicLibrary”);

//Get the function pointer
int DLLMethod = DllLib.DLLGetMethod(DllHan, “DllMethod”);

//Call the Method
int ans = DllLib.call(DllMethod);

Dynamic library component:
Provides the service

Source component: Requires
the service

OS Service

© Prof. Amir Tomer

Interfaces between components on different computers

• Components are in different runtime environments and communicate via message passing

– Pass messages via a hardware interface

• Example: Accessing a database server from a Java app). Steps include:

1. Build the query (app)

2. Convert query to internet message

(JDBC)

3. Send message via internet (OS)

4. Server receives message (OS)

5. Extract query from message (OS)

6. Perform query (DB)

2
9

 M
ay

 2
0

2
5

Lecture 9 27

DB: Provides the service

App: Requires the service
שרת נתונים

DB with SQL
query interface

Client Computer + OS + Browser

App that uses
data from DB

<<internet>>

TCP/IP

Java Database
Connectivity
(JDBC)

© Prof. Amir Tomer

Components and Interfaces in UML
2

9
 M

ay
 2

0
2

5

Lecture 9 28

Provided Interface

Required Interface

Component

Assembly Connector

Component A Component B
Fixed and exclusive

connection A to B

Dependency

Component A Component B
Dependency between

the interfaces

A is dependent on B:

If B changes, A may have to as well

Is the required

interface always

dependent on

the provided

one?

© Prof. Amir Tomer

What’s the difference between buying a product in a
store or online?

Buying in a store (Synchronous)

• Process:

1. Arrive at store, choose the product

2. Pay

3. Buyer leaves the store with the product

• Knowledge required

1. Buyer knows the store’s address

2. Store doesn’t know the buyer’s address

Buying online (Asynchronous)

• Process

1. Browse to store website, choose the

product

2. Pay

3. Buyer leaves website, product remains at

the store

4. Store ships the buyer the product

• Knowledge required

1. Buyer knows the store’s address

2. Store knows the buyer’s address

2
9

 M
ay

 2
0

2
5

Lecture 9 29

© Prof. Amir Tomer

Identifying component interfaces based on environment interactions

• Synchronous calls: Response comes back as part of the call (and on its interface)

• Asynchronous calls: No immediate response, so caller must provide another interface for

the response

2
9

 M
ay

 2
0

2
5

Lecture 9 30

Comp. A Comp. B

X

Provided interface
for X

call X

return

Comp. A Comp. B

X

call X

call Y
Y

Required interface
for X

© Prof. Amir Tomer

Example: Difference between one-time data request and repeat data
transfer

• X = Synchronous request of data

• Y = Choose data for repeated data transfer

• Z = Repeated data transfer

2
9

 M
ay

 2
0

2
5

Lecture 9 31

X

call X

return

Base
Remote
Server

Y
call Y

call Z
Z

loop

Interfaces

X

Y

Z

© Prof. Amir Tomer

Defining interfaces for a single component
• Examine all the calls to and from the component in the sequence diagrams

– Example: the Elevator C&C component in the elevator example

2
9

 M
ay

 2
0

2
5

Lecture 9 32

© Prof. Amir Tomer

Elevator C&C Component – Sequence Diagram “Call Elevator”

2
9

 M
ay

 2
0

2
5

Lecture 9 33

Calls to the component

© Prof. Amir Tomer

Elevator C&C Component – Sequence Diagram “Ride Elevator”

2
9

 M
ay

 2
0

2
5

Lecture 9 34

Calls to the component

Calls from the component

© Prof. Amir Tomer

Elevator C&C Component – Sequence Diagram “Travelling
between floors”

2
9

 M
ay

 2
0

2
5

Lecture 9 35

Calls to the component

Calls from the component

© Prof. Amir Tomer

Elevator System: Functional components and interfaces
2

9
 M

ay
 2

0
2

5

Lecture 9 36

© Prof. Amir Tomer

Component Documentation
• Document every functional component

2
9

 M
ay

 2
0

2
5

Lecture 9 37

Component Interfaces

Name Role Name Type Service

Elevator

C&C

Controls a

single

elevator car

elev. but. Requests Provided Receives user requests from buttons in the car

Direct requests Provided Receives requests from the central command

Start up/shut down Provided Starts up or shuts down the car

Elev. But. Control Required Turns buttons on or off

Door control Required Controls the doors

Engine control Required Controls the engine

Direct reports Required Reports elevator state

© Prof. Amir Tomer

Software Architecture (Logical or Functional architecture)

• Functional components and the connections between them

– Required connection: Between components that must be in the same hardware

• Shown via an assembly connector

– Dependency: Between components that can be installed on separate hardware

• Shown via a dependency

• Unconnected interfaces are external environment-

facing interfaces

2
9

 M
ay

 2
0

2
5

Lecture 9 38

Larger n
ext

© Prof. Amir Tomer

Software Architecture (Logical or Functional architecture)

2
9

 M
ay

 2
0

2
5

Lecture 9 39

Software architecture for the

elevator system

All connections between interfaces

are dependencies, giving maximal

deployment flexibility.

© Prof. Amir Tomer

Documenting the logical architecture
• In addition to the diagram, document each component in the architecture with its known

details

– Functional components and their roles

– Functional interfaces for each component, their types, and what services they offer

• Document using text or within a modelling tool

• Connections between interfaces are shown in the figure

– Assembly connector shows a connection that must be on the same hardware

– Dependencies show connections that are deployment-specific

– Unconnected interfaces interact with the external environment

• More on this later

2
9

 M
ay

 2
0

2
5

Lecture 9 40

© Prof. Amir Tomer

In Class Assignment: Software Architecture

• Build the software architecture for ePark

1. Open the component diagram you built

2. Open the sequence diagrams that you built based on the use cases

3. For each component

1. Find all incoming calls in the sequence diagrams and define provided interfaces for them

2. Find all outgoing calls in the sequence diagrams and define required interfaces for them

4. Connect all interfaces between components as appropriate

2
9

 M
ay

 2
0

2
5

Lecture 9 41

© Prof. Amir Tomer

Conclusion
• Process Design

– Sequence Diagrams

• Software Interfaces

– Component interfaces

– Logical architecture

2
9

 M
ay

 2
0

2
5

Lecture 9 42

	Default Section
	Slide 1
	Slide 2: Topics for Today

	Process Design
	Slide 3: Planning Processes
	Slide 4: System Architecture: SIS architecture includes
	Slide 5: Implementing system processes via functional components
	Slide 6: Sequence diagram
	Slide 7: Interaction Frames
	Slide 8: Sample sequence diagram with control blocks
	Slide 9: Refining the elevator example
	Slide 10: Refining the elevator example
	Slide 11: SUC-1 Call Elevator
	Slide 12: Sequence diagram: SUC-1 Call Elevator
	Slide 13: SUC-2 Ride Elevator
	Slide 14: SUC-2 Ride Elevator
	Slide 15: Sequence Diagram for SUC-2 Ride Elevator
	Slide 16: Sequence Diagram: Elevator regular operation
	Slide 17: SUC-3 Rescue
	Slide 18: Sequence diagram form SUC-3: Rescue
	Slide 19: In class task: Implement a UC via sequence diagrams

	Logical Architecture
	Slide 20: So Far
	Slide 21: Planning Software Architecture Activities
	Slide 22: Functional components
	Slide 23: Functional Interfaces (Software Interfaces)
	Slide 24: Functional Interfaces (Software Interfaces)
	Slide 25: Interfaces between connected components
	Slide 26: Interfaces between components in the same environment
	Slide 27: Interfaces between components on different computers
	Slide 28: Components and Interfaces in UML
	Slide 29: What’s the difference between buying a product in a store or online?
	Slide 30: Identifying component interfaces based on environment interactions
	Slide 31: Example: Difference between one-time data request and repeat data transfer
	Slide 32: Defining interfaces for a single component
	Slide 33: Elevator C&C Component – Sequence Diagram “Call Elevator”
	Slide 34: Elevator C&C Component – Sequence Diagram “Ride Elevator”
	Slide 35: Elevator C&C Component – Sequence Diagram “Travelling between floors”
	Slide 36: Elevator System: Functional components and interfaces
	Slide 37: Component Documentation
	Slide 38: Software Architecture (Logical or Functional architecture)
	Slide 39: Software Architecture (Logical or Functional architecture)
	Slide 40: Documenting the logical architecture
	Slide 41: In Class Assignment: Software Architecture
	Slide 42: Conclusion

