## **Engineering Software Intensive Systems**

# Physical architecture and the computational platform

Lecture 6 8 May 2025

Slides created by Prof Amir Tomer tomera@cs.technion.ac.il



Our goal: Plan and document the system's physical architecture and computational platform

#### Inputs:

- Hardware constraints (HC) from the requirements
- System technical description
- Plan/design for the system and hardware from systems engineering

#### **Outputs:**

- Physical architecture model
- Trackback from HC to architecture





## We are still at the system level

#### What do we have so far?

• Environment: Given



 Goals: Will be achieved via the defined system processes (i.e. use cases)

#### What do we need next?

- Ingredients
  - Hardware components
  - Software components



- Organization/Structure (internal and external connections)
  - Physical connections
  - Logical connections





- Interaction and Behavior
  - How do the components work together to implement the defined processes?

implement the defined processes?

| Image source: https://cliparting.com/wp-content/uploads/2016/10/Lego-blocks-black-and-white-clipart-free-clip-art-images-image-2-3.gif. https://www.tompkinsind.ca/products/brass-adapters-and-fittings/brass-pipe-adapters/3325

## System Architecture: SIS architecture includes

- 1. Physical architecture: Hardware components and physical connections static model (structure)
- 2. Logical architecture: Software components and logical connections static model (structure)
- 3. Process architecture: Implementation of processes via interaction between components dynamic model (behavior)

4. Composite architecture: Implementation of logical connections via physical connections – static model (structure)



## Sample Architectures

#### Physical architecture

- Linux server, Windows client endpoint, network connectivity, TCP/IP
- Dedicated computer, no communication

#### Logical architecture

- Exchange server, Outlook client, SMTP protocol
- eBay website, Oracle DB, Chrome browser, HTTP
- Navigation service, Waze app, HTTP

#### Composite architecture

- Backend service on server, frontend on client endpoint
- Frontend and backend on standalone computers

Supported processes (for all)

- Sending & receiving email
- E-commerce
- Navigation



## Where do we start?

## Case 1: Physical architecture already exists/predefined

#### Commonly occurs when:

- Developing an embedded multifunctional system (SW, HW, mechanical, ...)
- Upgrading legacy system
- (Simple) Web applications

### Work procedure

- Document physical architecture
- Build appropriate logical architecture

#### Case 2: Physical architecture not yet defined

- Commonly occurs when:
  - Information systems
  - Startup
  - Building libraries or generic software

### Work procedure

- Build the logical architecture
- Consider alternatives for physical architecture

Computational platform includes

HW Environment (Physical -Architecture)

Software

**Environment** 

- Physical components
  - HW boxes
    - Processors, storage devices, communication devices
- Physical interfaces
  - Connections between physical components to transfer information
    - Connectors, cables, electromagnetic radiation, internet
- Physical protocols
  - How the physical components communicate
    - RS-232, Bluetooth, HTTP, TCP/IP
- Execution environment
  - Environment that allows the SW to run on the HW
    - OS, DBMS, Interpreter
- Additional elements
  - Other programs installed on the HW that help the SW under development
    - Config files, database, DLLs

## Common computational platforms (HW)

### Computers



- Servers
- Endpoint computers
- Microprocessors

### Storage devices

- Disks
- External storage devices
- Network attached storage (NAS)



## Communication devices

- Modems
- Routers, switches
- Antennas, Wi-Fi/Cellular





### Peripherals



Printers

- Scanners
- Display devices
- Sensors, cameras



## **UML Physical architecture: Nodes**

- Node: A active physical computational object that normally has memory and processing ability
  - Common stereotypes: <<server>>, <<device>>, <<smartphone>>
  - Common understanding: <<device>> is a non-programmable element or one with built-in SW
- Execution environment
  - Common stereotypes: <<operating system>>, <<web server>>, <<cloud>>
- Nodes can be nested



For simplicity:
from here on, we'll
normally consider all
layers as a single entity

## **UML Physical architecture: Connections**

- Communication paths
  - Physical connection between nodes
    - Normally non-directional (full duplex)
    - Define medium and protocol
  - Common practice: Stereotype is medium, name is the protocol



## Common software items to find on the physical platform

- Platform software
  - OS, communications
  - Standard apps(browser)
- Executables
  - .exe, .jar, .py
  - DLLs, Drivers

- Configuration
  - Installation files
  - Registry
  - Format files
- Data items
  - Data files
  - Databases

- Media items
  - Images
  - Audio, video
- Information items
  - Help files
  - Online manuals

## Common software items to find on the physical platform



Lecture 6 © Prof. Amir Tomer

## Elevator System Physical Architecture (v1)

#### Distributed architecture

- Every elevator is an independent node with local computational services for its riders
- A central server manages and controls the whole system and gives central services (maintenance, rescue)
- Direct connection between elevators and the server (default: cabling, protocol up to the hardware engineer)



## **Documenting the Physical Architecture**

## Document all known architectural elements and details

Write details textually or using the modeling tool



### Computers, including



- Computing hardware
- Operating systems
- Execution environments (if applicable)
- Software artifacts installed (or that will be)

### Physical interfaces:



- Medium
- Protocol

Unknowns can be filled in during development

8 May 2025

## **Example architectural documentation**

### Computers

| Computer            | Element               | Diagram ID          | Туре                  | Role                                                       | Req.<br>Trackback |
|---------------------|-----------------------|---------------------|-----------------------|------------------------------------------------------------|-------------------|
| Central<br>Server   | Hardware              | Central Server      | Server TBD            | Central server for all elevators                           |                   |
|                     | Operating System      | TBD                 | TBD                   | OS for the central server                                  |                   |
|                     | Execution environment | None                | -                     | -                                                          |                   |
|                     | Software artifact 1   | Server SW           | -                     | Manages the whole system, including maintenance and rescue |                   |
| Elevator controller | Hardware              | Elevator controller | Controller <i>TBD</i> | Computer that manages the elevator car                     |                   |
|                     | Operating System      | TBD                 | TBD                   |                                                            |                   |
|                     | Execution environment | None                | -                     | -                                                          |                   |
|                     | Software artifact 1   | Elevator SW         |                       | Manages the car's operations                               |                   |

8 May 2025

## **Example architectural documentation**

### **Devices**

| Device           | Diagram ID       | Туре                                                 | Role                                     | Req.<br>Trackback |
|------------------|------------------|------------------------------------------------------|------------------------------------------|-------------------|
| Floor panel      | Floor panel      | Light-up<br>buttons                                  | Per floor interface to call elevator car |                   |
| Technician panel | Technician Panel | Control panel                                        | Manage system tests by technicians       |                   |
| Rescuer panel    | Rescuer panel    | Control panel                                        | Manage rescue operations                 |                   |
| User panel       | User panel       | Light-up<br>buttons                                  | User interface inside the elevator       |                   |
| Engine           | Engine           | Engine with control board Move and stop the elevator |                                          |                   |
| Door             | Door             | Door with control board                              | Open and close the elevator entry        |                   |

## In class assignment: Physical architecture for ePark

- Based on the customer story and considering the requirements list (primarily the hardware constraints HC), offer an architecture for the ePark system by making a deployment diagram
  - Choose hardware nodes
  - Define the connections between them with the proper multiplicity
     labels
  - Try to offer execution environments/software elements (that you know about now) for the architecture you chose

#### **Performance Requirement (PR)**

- Parameters that measure the speed of actions
- Response time, data size, processor utilization

### **Quality Attributes (QA)**

General aspects of the solution

- Reliability: Works without errors for a certain amount of time
- Availability: Continuous service, fast recovery from errors
- Safety: Protects users and the environment from the system
- Security: Protects the system from users
- Testability: Ability to test and verify the systems actions (also after the fact)
- Maintainability: Ability to easily change and repair the product
- Usability: Effectiveness and efficiency that the system gives users in performing their tasks and reaching their goals

For QA, ensure the requirement is measurable and verifiable!

## 8 May 2025

## Elevator System Physical Architecture (v1)

#### Distributed architecture

- Every elevator is an independent node with local computational services for its riders
- A central server manages and controls the whole system and gives central services (maintenance, rescue)
- Direct connection between elevators and the server (default: cabling, protocol up to the hardware engineer)



## **Elevator System Physical Architecture (v2)**

#### Network architecture

- Central server and elevators connected via a wireless network
- Technician comes with a laptop and connects to the system via the network



## 8 May 2025

## **Elevator System Physical Architecture (v3)**

#### Centralized architecture

- The whole system is controlled and operated by a single computer with IoT connections to all devices
- External services (operation and control) are offered remotely via the internet



- The architecture chosen affects the QA of the system
  - The most influential requirements on the architecture are the non-functional ones
  - All architectures suggested can meet the functional requirements

| Architecture  Quality Attribute | Distributed (v1) | Network<br>(v2) | Centralized<br>(v3) |
|---------------------------------|------------------|-----------------|---------------------|
|                                 | 1 1              | N //            | N /                 |
| Performance                     | П                | M               | IVI                 |
| Availability                    | Н                | M               | L                   |
| Security                        | Н                | L               | Н                   |
| Maintainability                 | L                | М               | Н                   |
| Cost                            | Н                | М               | L                   |

## Conclusion

Physical architecture