
© Prof. Amir Tomer

Engineering Software Intensive Systems

Software from a Systems

Perspective, Development

Processes, Requirements
Lecture 2

27 March 2025

Slides created by

Prof Amir Tomer

tomera@cs.technion.ac.il

mailto:tomera@cs.technion.ac.il

© Prof. Amir Tomer

Topics for today
• Software from a Systems Perspective

• Development Process of a Software Intensive System

• Requirements and Stakeholders

• Elicitation and Management

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 2

© Prof. Amir Tomer

A system in its environment

• The level (width) is the environment in which the system operates

– Provides services to its environment (the aided environment)

– Receives services from its environment (the supporting environment)

Aided EnvSupporting Env System and services

Bank

• Checking

• Investments

• Loans

Customer,

Credit Companies
Stock Exchange

ATM

• Withdraw

• Deposit

• Transfer

User, AdminCentral server

User Interface

• Orders and Data

• Display

• Audio

Keyboard,

Buttons
Screen, speaker

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 3

© Prof. Amir Tomer

A system in its environment (exercise)

• For each of the systems related to in-car navigation, write the

services, aided environment, and supporting environment

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 4

Nav system

•

•

•

Nav application

•

•

•

Route tracking component

•

•

•

Aided EnvSupporting Env System and services

© Prof. Amir Tomer

So Far
• Software from a Systems Perspective

• Development Process of a Software Intensive System

• Requirements and Stakeholders

• Elicitation and Management

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 5

© Prof. Amir Tomer

Software Lifecycle

Development

Process

Product

conception Release

retirement

Customer and

Stakeholder

needs, desires,

constraints

Fixes

Updates

• Definition: Lifecycle

• Evolution of the system, product, service, project or other man-

made entity from conception to retirement [ISO/IEC 15288]2
7

 M
ar

ch
 2

0
2

5

Lecture 2 6

© Prof. Amir Tomer

What is a Development Process?
• A development process is meant to solve a problem or a need by mapping from the

problem space to the solution space

– Solution space: Technology, engineering results

– Problem space varies from system to system

• Example: Information Systems Technology

– Solution space: Data records, files, reports, transactions

– Problem space 1: A bank = {branch, customer, account, transfers}

– Problem space 2: A hospital = {department, test, patient, diagnosis}

Test Department

Patient Medical status

Hospital
Branch Account

Transfer Customer

Bank

Record

ReportTransaction

FileInformation Systems Technology2
7

 M
ar

ch
 2

0
2

5

Lecture 2 7

© Prof. Amir Tomer

Aside: Problem Domain Modelling

• How to give

stakeholders a shared

understanding of basic

system concepts?

– User

– Button

– Report

– Input

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 8

© Prof. Amir Tomer

Aside: Problem Domain Modelling

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 9

“is a kind of”

“part of”

relation

© Prof. Amir Tomer

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 10

Steps in the Development Process

Analysis

• Understand
the problem
or need

Ideas

• Assemble
the solution
basics
(system)

• Structural
concept

• Operational
concept

Plan

• Planning the
solution

• System →
Subsystem
→

Assemblies
→ Modules

• Structural
planning

• Operational
and
Functional
planning

Implement

• Build
ingredients

• Integration

Test

• Validate
against
plans

• Validate
against
needs and
problems

Fixes, Upgrades

Evolve!

© Prof. Amir Tomer

Simple development process: Build & Fix

Program
Version 1

Update until
customer

happy

Release

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 11

ChatGPT –
write an app
for me!

© Prof. Amir Tomer

Build & Fix

• Attempts to understand the problem by solving it
via trial and error

Process is not well defined

• You know when you’re going to start, no clue
when you will finish

Development without planning

• Requirements can change at any time

Uncontrolled process

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 12

Uncontrolled evolution!

© Prof. Amir Tomer

Build & Fix

• Lots of reworking

• It’s never clear whether the final product will satisfy the
customer

Main risks

• There’s no time! Got to start right now and deliver it yesterday

Why do people do it?

• The longer you’re at it, each change becomes more and more
difficult

• A technological house of cards

• Maintenance is impossible

Main results

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 13

If you don't
have time

to do it right,
Where would you get

the time to do it

again???

Uncontrolled evolution!

© Prof. Amir Tomer

https://xkcd.com/974/

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 14

I find that when someone's taking time to do something right

in the present, they're a perfectionist with no ability to

prioritize, whereas when someone took time to do something

right in the past, they're a master artisan of great foresight.

© Prof. Amir Tomer

https://xkcd.com/1988/

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 15

© Prof. Amir Tomer

https://xkcd.com/2054/

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 16

© Prof. Amir Tomer

Building a house

Customer needs, desires, wants
Living and Utilities
Appearance
Future potential
Budget and schedule constraints

Requirements and Architectural Specs
Walls, floors, roofs
Elevations
Water and power connections
Doors, stairs

Planning and Quantities
Construction plan
Infrastructure plans
(power, water, sewer)

Construction
Walls and floors
Electrical cabling, pipes
Finishings

Stakeholder Requirements:
Registration
Infrastructure (interfaces)

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 17

© Prof. Amir Tomer

Building software

Customer needs, desires, wants
Services, tasks
Performance
Future capabilities
Budget and schedule constraints

Requirements and Architectural Specs
Use cases
Logical architecture & interfaces
Data Entities
Operational concept

Planning and Quantities
Modules and physical interfaces
Databases and data structures
Algorithms
Protocols

Construction
Code, Compile
Link
Integrate

Stakeholder Requirements:
Standards
Interface requirements

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 18

© Prof. Amir Tomer

Between building a house and building
software

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 19

Speed of
Evolution

• Houses
change
slowly

• Software
changes
fast

Ease of
change

• Hard to
change
ingredients
or structure
(“move this
wall!”)

• Easier to
change
software
ingredients
or structure

Materials

• Each
house
requires
new
materials

• Software
can be
copied
without
additional
materials

Most
importantly

• Houses are
static

• It doesn’t
work, it
exists

© Prof. Amir Tomer

A first model: Waterfall
2

7
 M

ar
ch

 2
0

2
5

Lecture 2 20

Photo by Ezgi Kimball on Unsplash

https://unsplash.com/@the_sweet_melody?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/waterfalls?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

© Prof. Amir Tomer

Waterfall Model

Operation

Discard

Validation

System Requirements

Validation

Analysis

Validation

Design

Validation

Coding

Validation

Integration

Validation

Requirements Changes Royce, 1970

Support: Fixes

Support: Fixes

Support: Fixes

Support: Improvement
Support: Adaptation

Feedback, updates

Maintenance

Development

Unplanned Evolution!

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 21

© Prof. Amir Tomer

The (Short) life and (unsurprising) death of the
Waterfall Model DOD-

STD-

2167A

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 22

I believe in this concept, but the implementation described above is risky and invites failure. The

problem is illustrated in Figure 4. The testing phase which occurs at the end of the development cycle is the

first event for which timing, storage, input/output transfers, etc., are experienced as distinguished from

analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy the various

external constraints, then invariably a major redesign is required. A simple octal patch or redo of some isolated

code will not fix these kinds of difficulties. The required design changes are likely to be so disruptive that the

software requirements upon which the design is based and which provides the rationale for everything are

violated. Either the requirements must be modified, or a substantial change in the design is required. In effect

the development process has returned to the origin and one can expect up to a lO0-percent overrun in schedule

and/or costs.

© Prof. Amir Tomer

Waterfall - Attributes
Every stage is made up of one
activity

• Goal is to finish the whole effort in one
phase

• No preparation for changes or additions

• There are response cycles between
adjacent stages - Only if needed to fix
problems that arise

Process is document-driven

• First phases produce only docs

• Advancing to the next phase depends
on docs from previous phase

• Leads to paralysis by analysis

Plusses

• Process is well documented

• Support is easier

Minuses

• Validation of analysis and planning can
only be
done on paper

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 23

© Prof. Amir Tomer

Waterfall - Attributes
• Works for small systems where change is not

expected - Such as?

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 24

?
SRS SDD

© Prof. Amir Tomer

A framework for software intensive development

Time

Definition and Specification Implementation, Integration and Testing

Sy
st

em

Responsibility

So
ft

w
a

re

Org
/Business

SISSIS

HWHWAppApp

SW
Element

SW
Element . . .

SW
Unit

SW
Unit

. . .

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 25

© Prof. Amir Tomer

V Model – Generic framework for SIS
development

Customer and
Stakeholder Req

Definitions

System Arch.
Processes &

Structure

SW Architecture
Processes &

Structure

SW Element
Planning, Process

and Structure

Coding and
Testing of SW

Elements

Integration and
Operation

SW/HW
Integration &
System Tests

Component
Integration &
SW Arch. test

Element
Integration &

Element design tests

Time

Definition and Specification Implementation, Integration and Testing

Verification

Verification

Verification

Validation

• Clear and tight connection between definition/specification levels and
implementation/testing levels

• Basis for iterative processes (fixes, upgrades)

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 26

Sy
st

em

Responsibility

so
ft

w
a

re

© Prof. Amir Tomer

V Model – A simplified view

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 27

Image source: By Leon Osborne, Jeffrey Brummond, Robert Hart, Mohsen (Moe) Zarean Ph.D., P.E, Steven Conger ; Redrawn by User:Slashme. –

Image extracted from Clarus Concept of Operations. Publication No. FHWA-JPO-05-072, Federal Highway Administration (FHWA), 2005,

Public Domain, https://commons.wikimedia.org/w/index.php?curid=10275054

© Prof. Amir Tomer

Incremental/Iterative

• Build the system in a fixed
number of rounds

• Defined during an initial,
partial round

Agile development
methods

• Short development rounds
emphasizing implementation

• Update existing products as
needed

DevOps

• Integrate quick development
and operation in the field

• Short bursts of activity, heavy
automation

Development Processes that support evolution

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 28

© Prof. Amir Tomer

https://dilbert.com/strip/2017-08-27

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 29

© Prof. Amir Tomer

https://dilbert.com/strip/2007-11-26

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 30

© Prof. Amir Tomer

Incremental/Iterative Development Concept

• Divide the system into “pieces”

– Plan the iterations and closely manage them

– Intermediate builds – operational – that are tested and work!

– Risks track iterations

• Each iteration’s product removes some primary risk

• No clear definition of terms

– One option:

• The tool is incremental

• The development process is iterative.

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 31

© Prof. Amir Tomer

build n

build 2

Incremental/Iterative Development Process

System and Arch

requirements +

Iteration plans

Build

Requirements stage

Build

Analysis and Planning Stage

Build

Implementation

Build

Integration

Build

Testing

Compare build

to plans

build 1

Build

Release

Iterations

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 32

© Prof. Amir Tomer

Agile Development Concept
• Previous models were “Plan Driven”

• Claim: Software can’t be developed in fixed plans because

– It’s hard to see the whole picture

– Design and Specification changes all the time

– Software is flexible, so it can handle change

– The lack of a “production” phase in software development means you

can do quick iterations and delivery

• Therefore…

– We need a quick, flexible development process that can support

development under the above conditions

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 33

© Prof. Amir Tomer

Agile Development: Scrum methodology
2

7
 M

ar
ch

 2
0

2
5

Lecture 2 34

© Prof. Amir Tomer

DevOps: Development Operations (Infinite Development)

• Concept: Regular releases based on information and actual

usage

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 35

Picture Source: http://cdn.tricentis.com

Picture Source: https://www.linkedin.com/pulse/what-really-devops-does-benone-bitencourt

© Prof. Amir Tomer

Complete Lifecycle of Software Intensive System

Stakeholder Requirements

System Requirements

System Architecture

Component Requirements

Component Plans

Component Implementation

SW
Versions

System Versions

Agile
Dev

Iterative/
Incremental

development

Product
Lines

Upgrade

(Evolution
)

Generations

New Products

Customer/Market Developers Customer/Market

Definition and Specification Implementation, Integration, Testing

Production/Use

DevOps

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 36

© Prof. Amir Tomer

Model Based Development

• Modeling

– A means to capture ideas, relationships, decisions and requirements in a

well-defined notation that can be applied to many different domains

[Pilone, D., UML 2.0 in a Nutshell, O’REILLY®, 2005

• Models give a simplified and abstract idea of complex entities

– Models focus on primary elements without getting into details

– Models require some translation to the real world

– Models have different degrees of freedom in

interpretation

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 37

© Prof. Amir Tomer

Using Models: Two directions
• Forward Modeling: Model before implement

– Sketches of new ideas

– Brainstorming before solutions

– Offer solution alternatives

– Drive development plans

• Reverse Modeling: Model after implementation

– Document a system as built

– Explain a system to others

– Support production/maintenance/upgrading of

systems

– Use as an input for forward modeling for future

systems

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 38

© Prof. Amir Tomer

Static and Dynamic Models
• Static/Structural Models: Model that describes entities and connections

between them

• Organizational chart

• Mechanical sketch

• Molecular structure

• Table/Relation in a DB

• Dynamic/Behavioral/Operational Model: Models that describe the process,

flow, or state transitions

• Flow chart/Algorithm

• Graph of function over time

• Automaton

• Animation/Simulation

• Models can be graphical, textual, or a combination2
7

 M
ar

ch
 2

0
2

5

Lecture 2 39

© Prof. Amir Tomer

Modeling in a graphical language
• Set of legal symbols (alphabet)

• Legal combinations (grammar)

• Meaning (semantics)

• Expressiveness

{text}✓✓

✓


A B ?
xComputer A is connected to

Computer B via interface x

Process A sends
data x to Process B ✓

Computer A is connected to at least 1 and no
more than 10 Computer B’s at once

Computer A is connected to
Computer B via interface x✓

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 40

© Prof. Amir Tomer

UML = Unified Modeling Language

• Graphical language for Object Oriented Analysis and Design

– Current version UML 2.5.1 (Dec 2017)

• Includes a collection of modeling tools for different aspects of software

• Evolved by merging sets of existing methods

– Grady Booch, 1991-1996

– James Rumbaugh (OMT), 1992-1996

– Ivar Jacobson (Objectory), 1992-1997

• Computer Aided Software Engineering (CASE) tools from Rational (IBM)

• Object Management Group (OMG) adopted it in 1997 as an ad hoc

standard

– Represents advice for about 800 companies and organizations.

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 41

© Prof. Amir Tomer

UML Model Families

Modules we’ll cover in this course

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 42

© Prof. Amir Tomer

Methodology: Connects Language and Process
MBSE = Model Based System/Software Engineering

• Primary issues in MBSE

– When and how to use each model

– How to preserve consistency between

models

Process

Language

M
et

ho
dology

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 43

© Prof. Amir Tomer

Who uses UML and modelling?

“Industry”

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 44

Startups

Small software

houses

Large software

consultancies

Very large high tech companies

Less More

© Prof. Amir Tomer

So Far

• Software from a Systems Perspective

• Development Process of a Software Intensive System

• Requirements and Stakeholders

• Elicitation and Management

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 45

© Prof. Amir Tomer

Eliciting requirements from customers and stakeholders

• Goal of the stage

– Understand the problem/need + the solution concept

– Collect, concretize, categorize requirements

• Reflect the parts of the problem/need and the solution concept

• Are the basis for managing the development

• Input

– Technical design, operational design (i.e. the user

stories and stakeholder stories)

• Result

– Categorized requirements table

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 46

© Prof. Amir Tomer

I am thirsty!
2

7
 M

ar
ch

 2
0

2
5

Lecture 2 47

Image sources: Acosta.eu, CC BY-SA 3.0,

via Wikimedia Commons, Rakoon, CC0, via Wikimedia Commons

© Prof. Amir Tomer

Discussion Question

What are “Requirements”

• Give examples of requirements
for:

• A car

• A software engineering student

• Birthday present

Who decides/chooses the
requirements?

What’s the difference
between requirement and

features?

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 48

© Prof. Amir Tomer

Definitions
• A requirement

– A property or a capability of the product that is required to address a problem/need

• Needed to solve a problem or achieve some goal (for users)

• To meet a contract, standard, or applicable document (for stakeholders)

• Design/Implementation

– A technical solution through which you can satisfy one or more requirements

– Design of each level becomes the foundation for requirements at the next level

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 49

Need

s

Requirement

s

FulfillsDesign/Implementation Fulfills

Next level

requirements
Next level

Design/Implementation

Fulfills

Next level

requirements
Next level

Design/Implementation

Fulfills

features

© Prof. Amir Tomer

Stakeholders – Those who require the requirements

• Definition: Stakeholder: An entity that is affected by the system’s

development or are in someway responsible for its development

• Common stakeholders in SIS:

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 50

Users

• Use the system for their own
needs

Customers/Clients

• Ordered the system

Market Analysts

• Represent customers and
users

• Analyze their needs and
wants

Regulators and
Professional Bodies

• Define standards or rules that
affect the system

Engineers

• Represent technical interests

• Affect system design,
acceptable technologies,
reuse, off-the-shelf
components

Managers

• Represent organizational
interests

• Affect requirements such as
human resources, other
projects, business goals,
budget, timing

© Prof. Amir Tomer

Everyone sees things differently
2

7
 M

ar
ch

 2
0

2
5

Lecture 2 51

Image source: https://i.pinimg.com/originals/81/69/66/816966c6145a936ff046c8e9c9c63986.png

© Prof. Amir Tomer

What requirements are needed?

• Give an example of a

feature that almost

never used.

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 52

© Prof. Amir Tomer

Aside: Requirements Engineering
2

7
 M

ar
ch

 2
0

2
5

Lecture 2 53

Xavier Franch, Cristina Palomares, and Tony Gorschek. 2021. On the requirements engineer role. Commun. ACM 64, 6 (June 2021), 69–75. DOI:https://doi.org/10.1145/3418292

h
tt

p
s

:/
/l

in
k

.s
p

ri
n

g
e

r.
c

o
m

/b
o

o
k

/1
0

.1
0

0
7

/9
7

8
-1

-4
4

7
1

-3
7

3
0

-6

© Prof. Amir Tomer

So Far

• Software from a Systems Perspective

• Development Process of a Software Intensive System

• Requirements and Stakeholders

• Elicitation and Management

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 54

© Prof. Amir Tomer

Specification: Customer and Stakeholder Story

• Textual description of an entity from which we can derive

requirements

• Technical specification

– The technical details that refer to the structure and main

ingredients of the entity

• Operational specification

– Description of how the entity behaves and how it serves

the goals of the stakeholders

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 55

© Prof. Amir Tomer

Technical Specification: Elevator System

An elevator system in an office building has the following
elements:

• 3 elevators serving 10 floors

– Every car has an independent controller + control
software

• Every car has a panel for users with the following
elements

– Floor buttons with number 0, 1, 2, 3 …, 9

– An emergency stop button

– An alarm/rescue button

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 56

© Prof. Amir Tomer

Technical Specification: Elevator System

• Floors have up and down buttons

– Top floor has only down. Bottom floor has only up

• Machine room with:

– Computer + software to control and monitor all elevators

– Emergency operator panel for rescue services from stuck

elevators

• Rescuer is a maintenance engineer in the building and is

part of the service

– Technician operator panel for testing and repairs

• Technician is not part of the building and is an external

service

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 57

© Prof. Amir Tomer

Elevators
2

7
 M

ar
ch

 2
0

2
5

Lecture 2 58

Floor 0

Floor 1

Floor 2

Floor 9

.

.

.

© Prof. Amir Tomer

Elevator Panel
2

7
 M

ar
ch

 2
0

2
5

Lecture 2 59

0

1

2

3

4

5

6

7

8

9

Stop Alarm

© Prof. Amir Tomer

Operational Specification: Elevator System

A passenger who is on a particular floor and wants to call an elevator presses the
appropriate button for the direction of travel (up or down). If the button was not
already lit, the button lights up after being pressed. An elevator car traveling in the
requested direction will arrive at the floor within one minute at most. When the car
arrives, the door opens and the light on the button turns off.

A passenger who is in an elevator car and wants to travel to a particular floor presses
on the button associated with the desired floor. If the button wasn’t already lit, the
button lights up and a new stop request for the floor is registered. The door closes.
After a short pause, the car continues moving. It stops at every floor for which there
is a stop request. When the car stops at a floor, the door opens and the button for
the floor turns off.

A passenger can stop the elevator car when its moving by pressing on the emergency
stop button. In that case, the elevator stops immediately and all registered stop
requests are erased. Afterwards, the elevator can resume operation by pressing a
button for any floor.

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 60

© Prof. Amir Tomer

Operational Specification: Elevator System

If the elevator gets stuck while in operation, passengers can call for help

using the emergency rescue button. The rescuer (the building

maintenance engineer) will access the emergency panel in the machine

room and perform operations to move the elevator car to the bottom

floor and open the door.

The maintenance engineer is responsible to start up the elevators at the

beginning of the day and to shut it down at the end of the day. The

technician comes once every 6 months and performs a complete check of

the system and fixes problems using the technician panel in the machine

room.

The elevator system must meet all applicable safety rules.

The system must be accessible to the handicapped.

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 61

© Prof. Amir Tomer

Discussion Questions

1. Give example requirements that can be

derived from the technical and operational

stories

2. Can you discern general requirements from

requirements at the feature level?

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 62

© Prof. Amir Tomer

Functional and Non-Functional Requirements

Functional Requirements

• Define the contents of the

solution

• Are clearly and specifically

addressed in the solution

(design/implementation)

Non-Functional Requirements

• Define properties and

constraints on the way the

solution is

created/implemented

• Are addressed when the

solution meets the required

properties and constraints

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 63

Specification/
Implementation

Functional requirements

Non-functional requirements

© Prof. Amir Tomer

Categorizing requirements for SIS:
Functional Requirements: Specify what the system must do

Operational Requirement (OR)

• Refers to an operation,

interaction, data processing

step, or system behavior

• Operations, scenarios,

response to events

• Functions, services,

algorithms

• Timing, order of operations

Data Requirement (DR)

• Refers to data elements –

but don’t specify what the

system does with it

• Data about the system

• Data the system processes

• Input/output data

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 64

Operational requirements: What the system must do

Data requirements: What the system must know

© Prof. Amir Tomer

Examples of Functional Requirements

Operational

• “rider …presses the appropriate button”

• “the button lights up after being pressed”

• “If the technician finds a bug, he tries to fix it
and perform the test again”

Data

• Floors have up and down
buttons. Top floor has only
down. Bottom floor has only
up

Note

• Operational requirements include data requirements within them (i.e. the
data they need work)
• E.g. turning on/off the light implies the light has two states – on and off

• Software generally “knows” details about the physical aspects of the
system (especially parts it controls).

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 65

© Prof. Amir Tomer

Non-Functional Requirements: Quality of the solution

Performance Requirement (PR)

• Parameters that measure the
speed of actions

• Response time, data size,
processor utilization

Quality Attributes (QA)
General aspects of the solution

• Reliability: Works without errors for a certain
amount of time

• Availability: Continuous service, fast recovery
from errors

• Safety: Protects users and the environment
from the system

• Security: Protects the system from users

• Testability: Ability to test and verify the systems
actions (also after the fact)

• Maintainability: Ability to easily change and
repair the product

• Usability: Effectiveness and efficiency that the
system gives users in performing their tasks and
reaching their goals

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 66

Specify additional aspects of the solution that must be met while meeting the functional requirements

For QA, ensure the requirement is measurable and verifiable!

© Prof. Amir Tomer

Non-Functional Requirements: Constraints

Hardware Constraint (HC)

• Hardware that must be used for

the system

– Parts, interfaces, architecture

• Based on the customer’s

technical specification or a

higher-level system design

Implementation Constraint (IC)

• Specific implementation

choice that must be used

– Algorithm, data structure,

data base, particular

operational behavior, reuse

of data, use of a technology

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 67

Conditions and limitations that affect the choice of the solution

© Prof. Amir Tomer

Non-Functional Requirements: Constraints

Management Constraint (MC)

• Management conditions that

must be followed by the

implementation

– Budget, schedule

– Availability of resources

– Following standards

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 68

Conditions and limitations that affect the choice of the solution

© Prof. Amir Tomer

Examples of Non-Functional Requirements

Performance

• An elevator car traveling in
the requested direction will
arrive at the floor within one
minute at most.

Testability

• The technician comes once
every 6 months and
performs a complete check
of the system

Maintainability

• The technician …fixes
problems

Usability

• The system must be
accessible to the
handicapped

Hardware Constraint

• Every car has an
independent controller +
control software

Implementation
Constraint

• A rider can stop the elevator
car when its moving by
pressing on the emergency
stop button.

Management
Constraint

The elevator system must
meet all applicable safety
rules.

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 69

© Prof. Amir Tomer

Conclusion
• Software from a Systems Perspective

• Development Process of a Software Intensive System

• Requirements and Stakeholders

• Elicitation and Management

2
7

 M
ar

ch
 2

0
2

5

Lecture 2 70

	Slide 1
	Slide 2: Topics for today
	Slide 3: A system in its environment
	Slide 4: A system in its environment (exercise)
	Slide 5: So Far
	Slide 6: Software Lifecycle
	Slide 7: What is a Development Process?
	Slide 8: Aside: Problem Domain Modelling
	Slide 9: Aside: Problem Domain Modelling
	Slide 10: Steps in the Development Process
	Slide 11: Simple development process: Build & Fix
	Slide 12: Build & Fix
	Slide 13: Build & Fix
	Slide 14: https://xkcd.com/974/
	Slide 15: https://xkcd.com/1988/
	Slide 16: https://xkcd.com/2054/
	Slide 17: Building a house
	Slide 18: Building software
	Slide 19: Between building a house and building software
	Slide 20: A first model: Waterfall
	Slide 21: Waterfall Model
	Slide 22: The (Short) life and (unsurprising) death of the Waterfall Model
	Slide 23: Waterfall - Attributes
	Slide 24: Waterfall - Attributes
	Slide 25: A framework for software intensive development
	Slide 26: V Model – Generic framework for SIS development
	Slide 27: V Model – A simplified view
	Slide 28: Development Processes that support evolution
	Slide 29: https://dilbert.com/strip/2017-08-27
	Slide 30: https://dilbert.com/strip/2007-11-26
	Slide 31: Incremental/Iterative Development Concept
	Slide 32: Incremental/Iterative Development Process
	Slide 33: Agile Development Concept
	Slide 34: Agile Development: Scrum methodology
	Slide 35: DevOps: Development Operations (Infinite Development)
	Slide 36: Complete Lifecycle of Software Intensive System
	Slide 37: Model Based Development
	Slide 38: Using Models: Two directions
	Slide 39: Static and Dynamic Models
	Slide 40: Modeling in a graphical language
	Slide 41: UML = Unified Modeling Language
	Slide 42: UML Model Families
	Slide 43: Methodology: Connects Language and Process MBSE = Model Based System/Software Engineering
	Slide 44: Who uses UML and modelling?
	Slide 45: So Far
	Slide 46: Eliciting requirements from customers and stakeholders
	Slide 47: I am thirsty!
	Slide 48: Discussion Question
	Slide 49: Definitions
	Slide 50: Stakeholders – Those who require the requirements
	Slide 51: Everyone sees things differently
	Slide 52: What requirements are needed?
	Slide 53: Aside: Requirements Engineering
	Slide 54: So Far
	Slide 55: Specification: Customer and Stakeholder Story
	Slide 56: Technical Specification: Elevator System
	Slide 57: Technical Specification: Elevator System
	Slide 58: Elevators
	Slide 59: Elevator Panel
	Slide 60: Operational Specification: Elevator System
	Slide 61: Operational Specification: Elevator System
	Slide 62: Discussion Questions
	Slide 63: Functional and Non-Functional Requirements
	Slide 64: Categorizing requirements for SIS: Functional Requirements: Specify what the system must do
	Slide 65: Examples of Functional Requirements
	Slide 66: Non-Functional Requirements: Quality of the solution
	Slide 67: Non-Functional Requirements: Constraints
	Slide 68: Non-Functional Requirements: Constraints
	Slide 69: Examples of Non-Functional Requirements
	Slide 70: Conclusion

