
© Prof. Amir Tomer

2
6

 J
u

n
e

2
0

2
5

Lecture 13 1

Engineering Software Intensive Systems

Testing
Lecture 13

26 June 2025

Slides created by

Prof Amir Tomer
tomera@cs.technion.ac.il

mailto:tomera@cs.technion.ac.il

© Prof. Amir Tomer

Topics for Today
• Testing

2
6

 J
u

n
e

2
0

2
5

Lecture 13 2

© Prof. Amir Tomer

Testing Levels for Software Products and Systems

• Three primary levels of testing during development

2
6

 J
u

n
e

2
0

2
5

Lecture 13 3

Unit

Tests

Integration

Tests

System Tests

Regression

Tests

Unit Tests

• Performed on each unit during
coding

• Repeat each time the unit
changes

Integration Tests

• Performed on each sub-group of
components after integration

• Repeat previous stage of
integration tests to ensure next
integration doesn’t break stuff

System/Product Tests

• Different types of tests on the
final product

• Repeat each time the product
changes

© Prof. Amir Tomer

Software Testing
“Software testing is a formal process that is
performed by a trained testing staff in which
individual software units, collections of software
units, or complete systems are tested by running
the software on computers. All tests are
performed in accordance with approved test
procedures on approved test cases.”

צוותבידיהמבוצע,פורמאליתהליךהואתוכנהבדיקות
יחידותמספר,תוכנהיחידתבמהלכואשר,מומחהבדיקות
נבדקותשלמהתוכנהמערכתאומשולבותתוכנה

הבדיקותכל.מחשבגביעלהתוכנההרצתבאמצעות
(test procedures)בדיקהנוהליפיעלמבוצעות
.מאושרים(test cases)בדיקהמקרימעלמאושרים

Daniel Glin, Technion

• Testing goals

• Direct

– Identify as many errors as possible in the tested

software

– Raise software quality to an acceptable level by fixing

found faults and checking to ensure their absence

– Perform required tests efficiently, effectively, on-

time, and on-budget

• Indirect

– Record observed software faults to use in future fault

prevention efforts (corrective and preventive actions)

2
6

 J
u

n
e

2
0

2
5

Lecture 13 4

© Prof. Amir Tomer

Ranking bugs by severity
Severity Description

5 (Critical) (1)Prevents performance of critical capabilities

(2)Endangers safety, security, or other critical requirements

4 (1)Badly affects performance of critical capabilities. No known work-around.

(2)Badly affects cost risks, project schedule, technical risks, or support for the project.

No known work-around.

3 (1)Badly degrades performance of critical capabilities, but with known work-around

(2)Badly affects cost risks, project schedule, technical risks, or support for the project,

but with known work-around.

2 (1)Causes user/operator discomfort, but does not affect critical operational or mission

capabilities

(2)Causes development or support team discomfort, but does not prevent them

fulfilling their tasks

1 (Minimal) All other effects

2
6

 J
u

n
e

2
0

2
5

Lecture 13 5

© Prof. Amir Tomer

https://dilbert.com/strip/1995-11-13
2

6
 J

u
n

e
2

0
2

5

Lecture 13 6

And many others… https://dilbert.com/search_results?terms=bug

© Prof. Amir Tomer

Seven Principles of Software Testing (Meyer, 2008)
1 Definition To test a program is to try to make it fail

2 Tests versus specs Tests are no substitute for specifications

3 Regression testing Any failed execution must yield a test case, to remain a permanent part of the
project’s test suite.

4 Applying oracles Determining success or failure of tests must be an automatic process.

5 Manual and
automatic test cases

An effective testing process must include both manually and automatically
produced test cases.

6 Empirical assessment
of testing strategies

Evaluate any testing strategy, however attractive in principle, through objective
assessment using explicit criteria in a reproducible testing process.

7 Assessment criteria A testing strategy’s most important property is the number of faults it uncovers
as a function of time.

2
6

 J
u

n
e

2
0

2
5

Lecture 13 7

© Prof. Amir Tomer

Testability

Lecture 13 8

2
6

 J
u

n
e

2
0

2
5

• Definition: The amount which a system or component allows the definition of testing criteria

and the performance of tests that establish whether the criteria were met

• Implications

1. What are the odds that a program will find a fault during testing (if one exists)?

2. How easy is it to reach test coverage?

• Coverage criteria

Functional
coverage

• Cover all
program
functions

Statement
coverage

• Cover all
program
statements

Condition
coverage

• Cover all
decision points
and branches
in the code

Path
coverage

• Cover all
potential
program paths

Entry/Exit
coverage

• Cover all calls
and returns in
the program

© Prof. Amir Tomer

Assuring testability: Control (J Bach, 2003)

Lecture 13 9

2
6

 J
u

n
e

2
0

2
5

“The better we can control the software, the more the testing can be

automated and optimized”

• Controlability: Existence of an interface or mechanism to define

test cases

– Debuggers, Commercial testing tools

• Test engineers can directly control program state, hardware

state, and system variables

• Objects, modules, and functional layers can be tested

independently

© Prof. Amir Tomer

Assuring testability: Observability (J Bach, 2003)

Lecture 13 10

2
6

 J
u

n
e

2
0

2
5

“What you see is what can be tested” or “You can’t test what you can’t see”

• Observability: Past states and historical values of system variables

are obvious and queryable (e.g. logs)

• Different output created for each input

• System state and variables are visible or queryable at runtime

• All elements that affect output are visible

• Invalid output is easily identified

• Internal errors are automatically detected and reported via self-test

© Prof. Amir Tomer

Assuring testability: Availability (J Bach, 2003)

Lecture 13 11

2
6

 J
u

n
e

2
0

2
5

“To test it, we have to get at it”

• Availability

• Software may have many faults (bugs add overhead and time to system
analysis and testing reports)

• Bugs don’t prevent the running of tests

• Product is developed in functional iterations

– Allows development and testing in parallel

– Already tested parts can help test others

• Access to source code

© Prof. Amir Tomer

Assuring testability: Simplicity (J Bach, 2003)

Lecture 13 12

2
6

 J
u

n
e

2
0

2
5

“The simpler it is, the less there is to test”

• Simplicity: Design must preserve internal consistency

• Functional simplicity: System has the minimum number of features

needed to meet all requirements

• Structural simplicity: Modules have tight cohesion and loose coupling

• Code simplicity: Code is not overly complex. An external reader can

effectively read it

© Prof. Amir Tomer

Assuring testability: Stability (J Bach, 2003)

Lecture 13 13

2
6

 J
u

n
e

2
0

2
5

“The fewer the changes, the fewer the disruptions to testing”

• Code doesn’t change often

• Changes to code are controlled and public

• Changes to code don’t prevent or invalidate automatic tests

© Prof. Amir Tomer

Assuring testability: Information (J Bach, 2003)

Lecture 13 14

2
6

 J
u

n
e

2
0

2
5

“The more information we have, the smarter we will test”

Design is similar to
existing products that
are well understood

Product is based on
proven technology

Dependencies on
internal, external, and
shared components
are explicit and well

understood

Program’s goals are
well understood

Intended users are
well understood

Program environment
is well understood

Documentation is
available, accurate,
organized, specific,

and detailed

Program
requirements are well

understood

© Prof. Amir Tomer

Unit Tests
• Unit

– A selection of code that can be

compiled and tested independently

– Often written by one programmer

• Driver

– Simulated unit that operates the

unit under test

• Stub

– Simulated unit operated by another

unit to test the operator

2
6

 J
u

n
e

2
0

2
5

Lecture 13 15

unit
(under test)

driver

stub stub stub

© Prof. Amir Tomer

Unit testing environment for a class
2

6
 J

u
n

e
2

0
2

5

Lecture 13 16

Operational Configuration

Unit Testing Configuration

«operational»

UnitUnderTest

(UUT)

«driver»

UUT_Driver

«interface»

IFClassA

«interface»

IFClassB

«operational»

ClassA
«operational»

ClassB

«stub»

StubA

«stub»

stubB

© Prof. Amir Tomer

Unit Testing Methods
Black box testing

• Check the operation of each unit in the

system

• Ensure outputs and responses are OK

– Legal inputs

– Illegal inputs

• Response time

White box/glass box testing

• Check the internal structure and state

of the unit

• Computational steps

• Computational correctness

• Correctness of logical decisions

2
6

 J
u

n
e

2
0

2
5

Lecture 13 17

Both methods require sets of test data to cover all test cases

© Prof. Amir Tomer

Black box testing

Lecture 13 18

2
6

 J
u

n
e

2
0

2
5

• Covering a function with numerical inputs 𝑓(𝑋1, … , 𝑋𝑛)

• Test data must cover all equivalence classes of inputs for all arguments

• For each argument X

– If the function must respond in a certain way in the interval [𝐿, 𝑈], check X with (at least) the following values

• 𝑋 > 𝑈, 𝑋 = 𝑈, 𝐿 < 𝑋 < 𝑈, 𝑋 = 𝐿, 𝑋 < 𝐿

• Example: Function power(Range, Speed) computes power (High, Medium, Low) based on range and speed

based on the following table

Range

Speed
𝑅 < 1 1 ≥ 𝑅 ≥ 5 𝑅 > 5

𝑆 < 100 L L M

100 ≤ 𝑆 ≤ 200 L M H

𝑆 > 200 M H H

© Prof. Amir Tomer

Unit Testing: Test Vector
2

6
 J

u
n

e
2

0
2

5

Lecture 13 19

R S Expected

Result

0.5 50 L

0.5 100 L

0.5 150 L

0.5 200 L

0.5 250 M

1 50 L

1 100 M

1 150 M

1 200 M

1 250 H

…

© Prof. Amir Tomer

Unit Testing: White Box
2

6
 J

u
n

e
2

0
2

5

Lecture 13 20

read (kmax) //1 <= kmax <= 18

for (k=0; k < kmax; k++) do {

 read(myChar)

 switch (myChar){

 case ‘A’:

 blockA;

 if (cond1) blockC;

 break;

 case ‘B’:

 blockB;

 if (cond2) blockC;

 break;

 case ‘C’:

 blockC;

 break;

 }

 blockD

}

myChar blockB

loop <= 18 times

cond1 cond2

blockA

blockC

‘B’‘A’

‘C’

blockD

Possible path count: 51 + 52 +⋯+ 518 = 4.77 × 1012

© Prof. Amir Tomer

Base path testing (McCabe, 1976)
• Classic white box testing method: Cover all potential

transitions in the unit

• Create a control flow graph of the unit

– Node: A computational unit without branching

– Edge: A computational branch

• Independent paths: Path from start to finish that includes at

least one new node compared to other paths

2
6

 J
u

n
e

2
0

2
5

Lecture 13 21

© Prof. Amir Tomer

Base path testing example
PDL procedure

1: do while records remain
 read record;
2: if record field 1 = 0
3: then process record;
 store in buffer;
 increment counter;
 else
4: if record field 2 = 0
5: then reset counter;
6: else process record;
 store in file;
7: endif
 endif
8: enddo
9:end

Flow graph

2
6

 J
u

n
e

2
0

2
5

Lecture 13 22

1

2

34

6 5

7

8

9

Base paths

Path 1 1-9

Path 2 1-2-3-8-1-9

Path 3 1-2-4-5-7-8-1-9

Path 4 1-2-4-6-7-8-1-9

© Prof. Amir Tomer

Cyclomatic Complexity – V(G) of graph G

Lecture 13 23

2
6

 J
u

n
e

2
0

2
5

• Number of base paths is small and finite

• Maximum number of independent paths is:

V G = E − N + 2 E = #edges, N = #nodes

= 𝑃 + 1 P = number of nodes with more than one exiting

edge - decision points(for graphs with max 2 exits per

node)

= 𝑅 R = number of closed regions + the open region

1

2

34

6 5

7

8

9

1

2

34

6 5

7

8

9

1

2

34

6 5

7

8

9

R1

R2

R3

R4

e1
e3 e4

e5 e6

e7 e8

e9 e11

e2

e10

11 – 9 + 2 = 3+1 = 4

© Prof. Amir Tomer

Integration Testing

• Our goals:

– Create components (applications) that work and are tested

• Inputs:

– Tested software units

• Outputs:

– Tested software components

2
6

 J
u

n
e

2
0

2
5

Lecture 13 24

© Prof. Amir Tomer

Integration Testing Environment
2

6
 J

u
n

e
2

0
2

5

Lecture 13 25

Integrated

& tested

units

driver

stub stub stub

unit

unit unit

unitunit

stubstub

© Prof. Amir Tomer

Component integration testing environment (UML)

2
6

 J
u

n
e

2
0

2
5

Lecture 13 26

Integration Testing Configuration

Operational Configuration

© Prof. Amir Tomer

Managing Integration

Lecture 13 27

2
6

 J
u

n
e

2
0

2
5

See you at integration!

• Making integration work

– Proper planning of integration steps

– Manage interfaces throughout the development process

– Check units early on (before final integration)

call f(x,y,z)procedure f(x,y)

https://www.youtube.com/watch?v=ry55--J4_VQ

© Prof. Amir Tomer

Continuous Integration – Test Early, Test Often, Avoid surprises

Write Code

Perform
Unit

Testing

Commit to
a shared

Repository

Run automatic
Integration Tests
on the commit

Receive
automated
response

2
6

 J
u

n
e

2
0

2
5

Lecture 13 28

Image © DevopsWithDeepss

Source: https://techwithdeepss.hashnode.dev/supercharge-your-software-development-with-effective-cicd-tools

© Prof. Amir Tomer

Sample Continuous Integration Tools (there are more)

BitBucket Pipeline

• Cloud solution

• On top of BitBucket
source code
management

Jenkins

• On premises

• Robust and veteran tool

AWS Code Pipeline

• Cloud solution

• Integrates with Amazon
Web Services

CircleCI

• Pairs with GitHub

• Can be on-premises or
cloud

Azure Pipelines

• Integrates with MS
Azure Cloud

• Supports GitHub and
Containers

GitLab

• Iintegrates with GitLab
source control

• Can be on-premises or
cloud

2
6

 J
u

n
e

2
0

2
5

Lecture 13 29

© Prof. Amir Tomer

Integration, Verification, Validation

• Our goals:

– Create a system that meets acceptance tests that the customer agreed to

– Operate a system in its environment, gather data and repair faults

• Inputs:

– Tested software, tested hardware

• Outputs:

– Tested and working system

2
6

 J
u

n
e

2
0

2
5

Lecture 13 30

© Prof. Amir Tomer

Validation and Verification: Proving the product

Verification

Did we build the

system correctly?

Validation

Did we build the

correct system?

2
6

 J
u

n
e

2
0

2
5

Lecture 13 31

© Prof. Amir Tomer

Validation and Verification: Proving the product

Prove the developed product

• Meets its requirements – verification

• Fulfills its goals in the production

environment - validation

Example: ATM

• Requirements

– The user can withdraw cash only if the

account balance is greater than or equal to

the withdrawal amount

– If the user repeatedly enters the wrong

PIN, the card will not be returned

• Goals

– Offer online banking services to 200,000

customers a day, without violating usage

rule, and while preserving data

completeness and correctness

2
6

 J
u

n
e

2
0

2
5

Lecture 13 32

© Prof. Amir Tomer

Proving a product
Tests, Field Tests

• Operate the product or part
of the product to examine
its actual performance

• E.g., Test the ATM in its
defined use cases

Prototype, Demo

• Build part of the solution to
test its expected behavior

• E.g., Build demo screens
and transition logic for an
ATM on a PC

Review

• Examine the specification of
the offered solution

• E.g., Read requirements,
use cases, and compare to
operational requirements

Simulation

• Build a model of how the solution behaves

• E.g., Simulate space flight via the navigation
and flight algorithms in the space craft code

Analysis

• Theoretical proof of correctness

• E.g., Build a state machine that shows
undesirable states are not reachable

2
6

 J
u

n
e

2
0

2
5

Lecture 13 33

© Prof. Amir Tomer

Conclusion
• Testing

2
6

 J
u

n
e

2
0

2
5

Lecture 13 34

	Default Section
	Slide 1
	Slide 2: Topics for Today

	Testing
	Slide 3: Testing Levels for Software Products and Systems
	Slide 4: Software Testing
	Slide 5: Ranking bugs by severity
	Slide 6: https://dilbert.com/strip/1995-11-13
	Slide 7: Seven Principles of Software Testing (Meyer, 2008)
	Slide 8: Testability
	Slide 9: Assuring testability: Control (J Bach, 2003)
	Slide 10: Assuring testability: Observability (J Bach, 2003)
	Slide 11: Assuring testability: Availability (J Bach, 2003)
	Slide 12: Assuring testability: Simplicity (J Bach, 2003)
	Slide 13: Assuring testability: Stability (J Bach, 2003)
	Slide 14: Assuring testability: Information (J Bach, 2003)
	Slide 15: Unit Tests
	Slide 16: Unit testing environment for a class
	Slide 17: Unit Testing Methods
	Slide 18: Black box testing
	Slide 19: Unit Testing: Test Vector
	Slide 20: Unit Testing: White Box
	Slide 21: Base path testing (McCabe, 1976)
	Slide 22: Base path testing example
	Slide 23: Cyclomatic Complexity – V(G) of graph G
	Slide 24: Integration Testing
	Slide 25: Integration Testing Environment
	Slide 26: Component integration testing environment (UML)
	Slide 27: Managing Integration
	Slide 28: Continuous Integration – Test Early, Test Often, Avoid surprises
	Slide 29: Sample Continuous Integration Tools (there are more)

	Integration, Verification, Validation
	Slide 30: Integration, Verification, Validation
	Slide 31: Validation and Verification: Proving the product
	Slide 32: Validation and Verification: Proving the product
	Slide 33: Proving a product
	Slide 34: Conclusion

