
© Prof. Amir Tomer

5
 J

u
n

e
2

0
2

5

Lecture 10 1

Engineering Software Intensive Systems

Composite Architecture, PDOM, Class

Model
Lecture 10

5 June 2025

Slides created by

Prof Amir Tomer
tomera@cs.technion.ac.il

Picture Source: http://www.techsoft3d.com/developers/technical-documentation/siemens-parasolid/

mailto:tomera@cs.technion.ac.il

© Prof. Amir Tomer

Topics for Today
• Composite Architecture

• PDOM

• Class Model

5
 J

u
n

e
2

0
2

5

Lecture 10 2

© Prof. Amir Tomer

Building Composite Architecture

• Our goals:

– Integrate the software and hardware architectures

– Connect physical interfaces to logical interfaces

• Inputs:

– Component Diagram

– Deployment diagram

• Outputs:

– Composite diagram

– Build and deployment plans for

software on the hardware

5
 J

u
n

e
2

0
2

5

Lecture 10 3

[System architecture: Structure]

Note: We took a step up to complete

the system architecture

© Prof. Amir Tomer

System Architecture: SIS architecture includes

Lecture 10 4

5
 J

u
n

e
2

0
2

5

1. Physical architecture: Hardware components and physical connections – static model (structure)

2. Logical architecture: Software components and logical connections – static model (structure)

3. Process architecture: Implementation of processes via interaction between components - dynamic

model (behavior)

4. Composite architecture: Implementation of logical connections via physical connections – static

model (structure)

SIS

HW
Element

HW
Element

SW
Element

SW
Element

.

1. Physical architecture2. Logical architecture - components

4. Composite architecture and deployment of SW on HW

3. Process architecture

Processes (Use Cases)

© Prof. Amir Tomer

Functional interfaces via physical interfaces

Lecture 10 5

5
 J

u
n

e
2

0
2

5

http://travelreportmx.com/wp-content/uploads/2013/08/smartphone-android-titan-b-7100-wifi-doble-chip-3g-53_MLM-F-3995481449_032013.jpg

http://wiki.openelec.tv/images/a/a9/Bluetooth.png

http://static.freepik.com/free-photo/earphones_318-10740.jpg

http://static.freepik.com/free-photo/black-microphone_318-8458.jpg

http://upload.wikimedia.org/wikipedia/commons/9/95/Speaker_Icon_rtl.png

http://www.roysegreentechnologies.com/1432398654659946443.png

http://www.3dcontentcentral.com/ShowModels/ContentCentral/___Blocks___/USB%20Icon%20-%207c56e684-54a6-4ab4-9b3c-d3746dd045be/Files/USB%20Icon.sldblk.jpg

http://www.clker.com/cliparts/5/8/5/2/12178632251467184782johnpwarren_Antenna_and_radio_waves.svg.hi.png

http://image.shutterstock.com/display_pic_with_logo/384199/117205738/stock-vector-communication-icons-set-telephone-internet-television-and-mobile-phone-117205738.jpgSmartphone physical

interfaces

http://olliebray.typepad.com/olliebraycom/images/2008/10/06/trackme_icon.png

https://cdn3.iconfinder.com/data/icons/token/Token,%20128x128,%20PNG/Search.png

https://cdn2.iconfinder.com/data/icons/picons-essentials/71/pop_out-512.png

?http://cdn-img.easyicon.net/png/10883/1088359.png

Provided
Interfaces http://cdn.baohe.org/?photo-frenchtechinlifescom-1313035306/ifa-2011-medion-announces-android-tablet-038-smartphone-medion-reveals-lifetab-honeycomb-tablet-038-_2.jpg

http://4vector.com/i/free-vector-satellite-clip-art_103345_Satellite_clip_art_hight.png

http://icons.iconarchive.com/icons/icons-land/gis-gps-map/256/Layers-icon.png

http://www.quarrybagelcafe.com/icons/directions-icon.png

Required
Interfaces

Functional (logical) of

navigation app

http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=6D4Dj9602dvt3M&tbnid=bzbabU8Kb22UPM:&ved=0CAUQjRw&url=http://travelreportmx.com/?p=21447&ei=9wZpUrOIAqWG0AWGmYEo&bvm=bv.55123115,d.d2k&psig=AFQjCNHT1CPyncJ_T99T-CHBMUSQzXaQuw&ust=1382701034617329
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=Ynx5hSwjATs34M&tbnid=H9pH5wsYmnHIVM:&ved=0CAUQjRw&url=http://wiki.openelec.tv/index.php?title=File:Bluetooth.png&ei=owNpUtOgM-qW0AXAroGQAg&bvm=bv.55123115,d.d2k&psig=AFQjCNFvBUKEY3EBaFfMuGO9r_leBGxThg&ust=1382700296768509
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=j455epOpRq0i8M&tbnid=F9_GQbfkN1pQIM:&ved=0CAUQjRw&url=http://www.freepik.com/free-icon/earphones_696854.htm&ei=DQRpUvmBHoiJ0AW90YBA&bvm=bv.55123115,d.d2k&psig=AFQjCNFUvFNWiIMVaHUcOaS_ecXig8hCyQ&ust=1382700360853557
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=A_YQgtlHWHuTSM&tbnid=VMeWIrGOlSTnTM:&ved=0CAUQjRw&url=http://www.freepik.com/free-icon/black-microphone_694362.htm&ei=pgRpUp_rFIWY1AWwgYHIAQ&bvm=bv.55123115,d.d2k&psig=AFQjCNGtx361VIFCNB0FxmZyuY1POKhFtQ&ust=1382700567644588
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=Zyygq1xq6rNwXM&tbnid=py7kGx39Pk9hhM:&ved=0CAUQjRw&url=http://commons.wikimedia.org/wiki/File:Speaker_Icon_rtl.png&ei=8QdpUrDSKKek0QXky4GIDA&bvm=bv.55123115,d.d2k&psig=AFQjCNG9KKWGVFlFrb_Js1e2JWyUHQjBPg&ust=1382701412632502
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=Kxfrz-F6XBh8uM&tbnid=RIgNCCryLiFMUM:&ved=0CAUQjRw&url=http://roysegreentechnologies.com/RGT-POD.html&ei=RARpUsGfGcHM0QXT9oCYAg&bvm=bv.55123115,d.d2k&psig=AFQjCNHCReKQOj-deunVPnQ4vYx2qvh2lw&ust=1382700470832237
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=LVVjRVvGca1leM&tbnid=54oP3m5h6VpubM:&ved=0CAUQjRw&url=http://www.3dcontentcentral.com/blocks/block.aspx?id=413307&ei=ZARpUuDzKcTJ0QXjhYDYBQ&bvm=bv.55123115,d.d2k&psig=AFQjCNG7CPwPwkSBxQyAfA2RDYnq4PmFSQ&ust=1382700511689207
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=8qSwPtakpxAyLM&tbnid=kSprtweb43wfeM:&ved=0CAUQjRw&url=http://www.clker.com/clipart-23862.html&ei=5QRpUqrhA4G20QWNh4HwBg&bvm=bv.55123115,d.d2k&psig=AFQjCNG4vO5VkBTrNX1wbOMaYoZ4byR5fw&ust=1382700634136592
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=Npvjc6SeccEBtM&tbnid=5zopoxhjFaXCXM:&ved=0CAUQjRw&url=http://www.shutterstock.com/pic-117205738/stock-vector-communication-icons-set-telephone-internet-television-and-mobile-phone.html&ei=VQVpUqf5N4Kl0wXGloGICQ&bvm=bv.55123115,d.d2k&psig=AFQjCNF0Jcqm1M98UfAIYCWpAtKF7bvr5g&ust=1382700734543665
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=immsQHxFr7n01M&tbnid=l8NLHeCYS452yM:&ved=0CAUQjRw&url=http://olliebray.typepad.com/olliebraycom/2008/10/iphone-in-edu-2.html&ei=6ZNqUsLuF-Od0AXo8YHYBg&bvm=bv.55123115,d.d2k&psig=AFQjCNHNWTZAUsCgoiZcBG_8TY8hq7u-gA&ust=1382802744769227
https://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=QxGvFb9MG-VJrM&tbnid=_muIVEdbS2V7AM:&ved=0CAUQjRw&url=https://www.iconfinder.com/search/?q=search&ei=SoBqUu_CIZDP0AWS3YGQBg&bvm=bv.55123115,d.d2k&psig=AFQjCNGuIOATNtjicAZi3SFhsw9W9i6tnw&ust=1382797756268455
https://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=M8RqZQuge5MokM&tbnid=I_nv5KlVyZ2t1M:&ved=0CAUQjRw&url=https://www.iconfinder.com/icons/97613/application_big_maximize_out_pop_window_zoom_icon&ei=n4BqUtH4HOuT0QWH2YC4DQ&bvm=bv.55123115,d.d2k&psig=AFQjCNElFQN5lHQSY4TjdWViHWIJy9t-JA&ust=1382797812823337
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=vskGmyZRadj22M&tbnid=Eac5kphFqn8bDM:&ved=0CAUQjRw&url=http://www.easyicon.net/language.en/1088359-route_icon.html&ei=9YRqUuqXLIKl0QXZgoC4Bg&bvm=bv.55123115,d.d2k&psig=AFQjCNFJ2gJ2aj-ovSMEwB7KCRX9Sn0Mpg&ust=1382798842530968
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=jzXm0oeA_v4RmM&tbnid=nrdKf63oIXVZVM:&ved=0CAUQjRw&url=http://french.techinlifes.com/ifa-2011-medion-announces-android-smartphone-and-tablet-medion-reveals-lifetab-honeycomb-gingerbread-tablet-and-navigation-oriented-smartphone/&ei=On9qUs3MLaek0QXky4GIDA&bvm=bv.55123115,d.d2k&psig=AFQjCNGqRJQ2vpQQb1JmTQNs6hTlu-Dg9w&ust=1382797187750777
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=ciBMIqPmKeq1DM&tbnid=qivuAs61ZITvGM:&ved=0CAUQjRw&url=http://4vector.com/free-vector/satellite-clip-art-103345&ei=tIFqUqJi8LbRBfa9gagI&bvm=bv.55123115,d.d2k&psig=AFQjCNHXl0aRGRp-8KkOn4SSdlYXM7zUow&ust=1382798004674084
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=4RM8ChMdLWHiZM&tbnid=hEVW4Muvnn2GdM:&ved=0CAUQjRw&url=http://www.iconarchive.com/show/gis-gps-map-icons-by-icons-land/Layers-icon.html&ei=SIJqUr3rLMeg0wX9yICoDg&bvm=bv.55123115,d.d2k&psig=AFQjCNHMbejHvmy0mBthm_6Gwino5Rpl2Q&ust=1382798257240522
http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=nCbwqJXKff-FuM&tbnid=VqotY6sZyLUZZM:&ved=0CAUQjRw&url=http://www.quarrybagelcafe.com/contact.php&ei=5YBqUurmF6WW0AWB-4FQ&bvm=bv.55123115,d.d2k&psig=AFQjCNHydUyoqommRZrbPUF_2COmQW9BEQ&ust=1382797904414955

© Prof. Amir Tomer

Connection between functional and physical interfaces

Lecture 10 6

5
 J

u
n

e
2

0
2

5

• Sometimes one or more execution environment layers stand between functional and physical

interfaces

– Passage through each layer requires a specialized mechanism

– The passage point is called a “port” and is shown with a small square

– For simplicity, we might compress a few ports into a single general one

<<PC>>

User’s Laptop

<<operating system>>
Windows 10

<<browser>>
Chrome

internet

MyApp

<<PC>>
User’s Laptop

MyApp
internet

© Prof. Amir Tomer

Delegation

Delegation from Provided interface

• The component provides the service to

the external environment via the port

• Requests arrive at the port and are

forwarded to the appropriate interface

Delegation from a Required interface

• The component receives the service

from the external environment via the

port

• Requests for the service leave via the

port to the external environment

5
 J

u
n

e
2

0
2

5

Lecture 10 7

An internal interface can’t directly contact the outside environment → it needs a port to represent it

Computer (+ OS + Execution Env.)

Component

<<delegate>>

<<delegate>>

© Prof. Amir Tomer

Difference between Logical and Physical architectures

Physical

• Physical architecture is built for a specific

system

• Each configuration has its own physical

architecture

Logical

• Logical architecture is more generic

• Can use the same components for many

systems

– Many “builds”

• Connections between interfaces are

implemented based on its physical location

– Direct connection: components in same software

(e.g. included, compiled)

– Dependency: different software, same computer

(e.g. DLL)

– Via port: different computers, different software

(e.g. client-server)

5
 J

u
n

e
2

0
2

5

Lecture 10 8

© Prof. Amir Tomer

Building composite architecture: Step 1

Lecture 10 9

5
 J

u
n

e
2

0
2

5

• Choose a physical architecture and decide how to break the components between the

computers

• Elevator physical architecture A

© Prof. Amir Tomer

Building composite architecture: Step 2

Lecture 10 10

5
 J

u
n

e
2

0
2

5

• Create the composite diagram (can also do one diagram per computer)

– Put the computers from the architecture in

– For each physical connection, add a port

© Prof. Amir Tomer

Building composite architecture: Step 3.1

Lecture 10 11

5
 J

u
n

e
2

0
2

5

• Place the functional components in the physical computers

• Connect the free interfaces to ports via <<delegate>> connections

• Connect internal dependencies with assembly connector

© Prof. Amir Tomer

Building composite architecture: Step 3.1
5

 J
u

n
e

2
0

2
5

Lecture 10 12

© Prof. Amir Tomer

Elevator System Physical Architecture (v2)

Lecture 10 13

5
 J

u
n

e
2

0
2

5

• Network architecture

– Central server and elevators connected via a wireless network

– Technician comes with a laptop and connects to the system via the network

© Prof. Amir Tomer

Elevator composite architecture B
5

 J
u

n
e

2
0

2
5

Lecture 10 14

© Prof. Amir Tomer

Elevator System Physical Architecture (v3)

Lecture 10 15

5
 J

u
n

e
2

0
2

5

• Centralized architecture

– The whole system is controlled and operated by a single computer with IoT connections to all

devices

– External services (operation and control) are offered remotely via the internet

© Prof. Amir Tomer

Elevator composite architecture C
5

 J
u

n
e

2
0

2
5

Lecture 10 16

© Prof. Amir Tomer

Physical architecture in UML: Software components and deployment

Artifact

• Two kinds

• Artifacts that exist in the given
computational environment (e.g.,
SendMsg.dll)

• Artifacts created during
development (e.g., MyProg.exe)

Deployment

• A dependency between a
software artifact and the node it’s
installed on

Deployment Diagram

• Diagram that shows the
deployment of software on
hardware

• In practice, the hardware
diagram showing where software
is

5
 J

u
n

e
2

0
2

5

Lecture 10 17

Node

Artifact

<<deploy>>
NodeA

Artifact1

NodeB

Artifact2

link/protocol

© Prof. Amir Tomer

Deployment diagram with installed artifacts

• Example: In-car navigation

5
 J

u
n

e
2

0
2

5

Lecture 10 18

Artifacts that are part of the platform

Artifacts created during dev.

© Prof. Amir Tomer

Connection between artifacts and components

• Components = Development code modules

• Artifacts = installed files (.exe)

• Components are “built” into artifacts

– Artifacts offer the components they are built of

– The offer is reflected by the <<manifest>> dependency

• Artifacts are installed on computers in the physical architecture

– Example elevator architecture A

5
 J

u
n

e
2

0
2

5

Lecture 10 19

© Prof. Amir Tomer

In class assignment: Composite Architecture

• Create a new Composite Architecture diagram for ePark

– Drag components and hardware nodes from your existing

physical and logical architecture diagrams

– Add ports for physical connections

– Add “User Port” for user interfaces (GUI)

– Connect external interfaces to ports using Delegate arrows

5
 J

u
n

e
2

0
2

5

Lecture 10 20

© Prof. Amir Tomer

In class assignment: Building artifacts and installation

• Create a new Deployment Diagram called “Build Allocation”

– Drag into it the components from the Component View

– Based on the composite architecture, define new artifacts

– Create <<manifest>> relationships between components and artifacts

– Install the artifacts on the on the physical architecture

• Perform the steps above on the ePark architecture

– Work using the steps shown in the slides before

5
 J

u
n

e
2

0
2

5

Lecture 10 21

© Prof. Amir Tomer

So Far
• Composite Architecture

• PDOM

• Class Model

5
 J

u
n

e
2

0
2

5

Lecture 10 22

© Prof. Amir Tomer

Planning software structure

• Our goals:

– Define the modules (classes that yield objects) that comprise the software

– Assign functionality to classes (attributes and methods)

• Inputs:

– Component Diagram

– Component-level sequence diagrams

• Outputs:

– Class diagram

5
 J

u
n

e
2

0
2

5

Lecture 10 23

© Prof. Amir Tomer

What we have so far
• We built a software architecture that includes

– Structure: the internal and external connections between parts – component diagram

– Behavior: the interaction between components to implement tasks – sequence diagrams

5
 J

u
n

e
2

0
2

5

Lecture 10 24

© Prof. Amir Tomer

Object Oriented Design
• We need to break down each software component next

5
 J

u
n

e
2

0
2

5

Lecture 10 25

Goals

• Implement each
component’s functionality

Ingredients

• Software modules
(classes) that will
comprise them

Structure

• The connections between
various objects

Behavior

• The interaction between
the objects & between
them and the environment
that implements
functionality

A

B

D

C

Comp1

A

B

D

C a:A c:C

b:B

© Prof. Amir Tomer

Traffic light vs. Roundabout
Traffic light intersection

• Vehicles are passive

• The algorithm is known only to the

traffic light

• Traffic light manages all vehicles

Roundabout intersection

• Vehicles are active

• Each vehicle knows the algorithm

• Each vehicle manages itself and its

interactions with other vehicles

5
 J

u
n

e
2

0
2

5

Lecture 10 26

© Prof. Amir Tomer

Object Oriented Paradigm
Object

• Specific entity

• Borders and identity defined

• Encapsulates state and behavior

– State = data members, data structures

– Behavior = member methods, functions

Class

• Descriptor of a set of objects with

shared attributes

– Properties, actions, relationships, behavior

5
 J

u
n

e
2

0
2

5

Lecture 10 27

Classes exist in code

only at code time

Objects exist in memory

only at run time

© Prof. Amir Tomer

Problem space and Solution Space
• A development process solves a problem or a need by mapping from the problem space to the solution space

– Solution space: Technology, engineering results

– Problem space varies from system to system

• Example: Information Systems Technology

– Solution space: Data records, files, reports, transactions

– Problem space 1: A bank = {branch, customer, account, transfers}

– Problem space 2: A hospital = {department, test, patient, diagnosis}

Test Department

Patient Medical status
Hospital

Branch Account

Transfer Customer
Bank

Record

ReportTransaction

FileInformation Systems Technology5
 J

u
n

e
2

0
2

5

Lecture 10 28

© Prof. Amir Tomer

OO Modeling of Problem Space
• OO allows us to build software that

matches the problem environment

– We later add solution-specific elements

• During system analysis we can build a

structured models of objects that

reflect the problem space

– Problem domain object model (PDOM)

• Goal: Clarify and specify concepts

and their relationships

– Create a common language for

stakeholders

• Uses:

– Resolve contradictions and gray

areas

– System glossary

– Basis for software objects

• Technique: Semantic network

5
 J

u
n

e
2

0
2

5

Lecture 10 29

© Prof. Amir Tomer

Semantic network
• Collection of concepts and

relationships between them

• UML recognizes three kinds of

relationships

– Kind of

– Part of/Has a

– Relates to

• A is a B

– A Boy is a kind of Person

– A Girl is a kind of Person

5
 J

u
n

e
2

0
2

5

Lecture 10 30

© Prof. Amir Tomer

Semantic network
• Collection of concepts and

relationships between them

• UML recognizes three kinds of

relationships

– Kind of

– Part of/Has a

– Relates to

• A has a B

– A Head is part of a Person

– A Person has a Child

5
 J

u
n

e
2

0
2

5

Lecture 10 31

© Prof. Amir Tomer

Semantic network
• Collection of concepts and

relationships between them

• UML recognizes three kinds of

relationships

– Kind of

– Part of/Has a

– Relates to

• A <relates to> B

– A Boy works with a Girl

5
 J

u
n

e
2

0
2

5

Lecture 10 32

© Prof. Amir Tomer

Operational Specification: Elevator System

A passenger who is on a particular floor and wants to call an elevator presses the appropriate

button for the direction of travel (up or down). If the button was not already lit, the button

lights up after being pressed. An elevator car traveling in the requested direction will arrive at

the floor within one minute at most. When the car arrives, the door opens and the light on

the button turns off.

A passenger who is in an elevator car and wants to travel to a particular floor presses on the

button associated with the desired floor. If the button wasn’t already lit, the button lights up

and a new stop request for the floor is registered. The door closes. After a short pause, the

car continues moving. It stops at every floor for which there is a stop request. When the car

stops at a floor, the door opens and the button for the floor turns off.

A passenger can stop the elevator car when its moving by pressing on the emergency stop

button. In that case, the elevator stops immediately and all registered stop requests are

erased. Afterwards, the elevator can resume operation by pressing a button for any floor.

5
 J

u
n

e
2

0
2

5

Lecture 10 33

© Prof. Amir Tomer

Operational Specification: Elevator System

If the elevator gets stuck while in operation, passengers can call for help using the emergency

rescue button. The rescuer (the building maintenance engineer) will access the emergency

panel in the machine room and perform operations to move the elevator car to the bottom

floor and open the door.

The maintenance engineer is responsible to start up the elevators at the beginning of the day

and to shut it down at the end of the day. The technician comes once every 6 months and

performs a complete check of the system and fixes problems using the technician panel in the

machine room.

The elevator system must meet all applicable safety rules.

The system must be accessible to the handicapped.

5
 J

u
n

e
2

0
2

5

Lecture 10 34

© Prof. Amir Tomer

List of Elevator Concepts
• Passenger

• Floor

• Elevator

• Directional button (floor)

• Door

• Floor button (in car)

• Stop request

• Emergency stop

• Rescue panel

• Maintenance engineer

• Check/Test

• Problems/faults

• Technician

5
 J

u
n

e
2

0
2

5

Lecture 10 35

© Prof. Amir Tomer

Elevator PDOM
5

 J
u

n
e

2
0

2
5

Lecture 10 36

“is a kind of”

“part of”

relation

© Prof. Amir Tomer

In class assignment: PDOM
• Create a PDOM for the ePark system

– Use the Class Diagram Toolbox in Enterprise Architect

– Include the following concepts (you can add your own if you need)

1. Child’s Guardian

2. Account

3. Child

4. eTicket

5. Bracelet

6. Entry

7. Attraction (device)

8. Supervisor

5
 J

u
n

e
2

0
2

5

Lecture 10 37

© Prof. Amir Tomer

So Far
• Composite Architecture

• PDOM

• Class Model

5
 J

u
n

e
2

0
2

5

Lecture 10 38

© Prof. Amir Tomer

Software Elements: Objects and Classes

Objects

• Basic elements of software

• Every object manages its information

via internal functionality (methods)

• Objects exist in memory while the

program is running

– Can create and destroy them dynamically

– Constructor, Destructor

• Every object has at least one handle or

pointer to it in memory

Classes

• Forms out of which objects are created

• Contain three elements

• Defined in code by the programmer

• Objects are instances of classes

5
 J

u
n

e
2

0
2

5

Lecture 10 39

Name

Attributes

(Data

Structures)

Methods

(Functionality)

© Prof. Amir Tomer

Creating and Operating Objects
Create a new object theBlueCar = new Car()

Initialize car details theBlueCar.make = “Mazda”
theBlueCar.model = “CX-8”

Licensing and registration theBlueCar.licenseplate = “12-345-67”
theBlueCar.registrationDate = 08/09/2021

Selling theBlueCar.sellTo(Lior)

Function sellTo (X){
 owner = X;
}

5
 J

u
n

e
2

0
2

5

Lecture 10 40

Car

+ maker: string

+ model: string

+ licensePlate: string

+ testDate: Date

- owner: Person

+ sellTo(Person) : void

+ getOwner(int) : Person

+ testIsValid(Date) : boolean

theBlueCar : Car

maker = “Mazda”

model = “CX-8”

licensePlate = “12-345-67”

registrationDate = 08/09/2020

owner = Lior

Class nameObject name

© Prof. Amir Tomer

Candidates for Objects in Software
Objects that represent physical entities

• Door, Engine, Workstation

• Attributes:

• Parameters and data about the entity

• Input/output

• Methods: Physical functionality

• Serve as a stand-in or interface to physical object

Objects that represent logical entities

• Process, Service

• Attributes:

• Parameters and data about the entity

• Input/Output

• Methods:

• Operations the entity can do

Objects that represent data entities

• Databases, data stores, lists, queues

• Attributes:

• Data elements managed by the object

• Methods:

• Data operations (store, retrieve, modify)

5
 J

u
n

e
2

0
2

5

Lecture 10 41

© Prof. Amir Tomer

Class Diagram - Syntax
Class

• Name

• Attributes (variables)

– Private (-): Can only be accessed from within the

class

– Public (+): Can be accessed also externally

– Protected (#): Can be accessed within the package

or by sub-classes

• Methods (Functions)

– Private (-): Can only be called from within the class

– Public (+): Can be called also externally

– Protected (#): Can be called within the package or

by sub-classes

5
 J

u
n

e
2

0
2

5

Lecture 10 42

© Prof. Amir Tomer

Class Diagram - Syntax

A B

Association

A B

Inheritance

A B

Aggregation

5
 J

u
n

e
2

0
2

5

Lecture 10 43

Class diagrams are based on the principles of semantic networks

© Prof. Amir Tomer

Inheritance and Generalization
• When class B inherits from Class A

– B has all of A’s attributes

– B has all of A’s methods

– B can also do more stuff

• Inheritance is “B is-an A”

• B is a “sub-class” of A

– B can do more than A

• Inheritance creates hierarchical relationships

• Abstract classes

– A class you can’t make instances of

– All instances are of subclasses (e.g. vehicle)

5
 J

u
n

e
2

0
2

5

Lecture 10 44

Elevator Button

•ID: Floor

Floor Button

•Direction {Up, Down

Button

•Lit (Yes/No)

•Press

•Turn On/Off

© Prof. Amir Tomer

Problems with inheritance
Multiple Inheritance

• One class inherits from multiple

classes

• Problem:

– Might lead to contradictions in attributes

or methods

• Solution:

– Most programming languages don’t allow

multiple inheritance (force tree-like

structure)

Deep Inheritance

• A ⊲ − B ⊲ − C ⊲ − D ⊲ − … ⊲ − X

• Problem:

– Keeping track of connections

(maintainability)

• Solution:

– Break the chain where connection is weak

5
 J

u
n

e
2

0
2

5

Lecture 10 45

© Prof. Amir Tomer

Problems with inheritance
False Inheritance

• Example: A square is a type of

rectangle, so Rectangle ⊲ − Square

• Problem:

– Rectangle has two attributes (len, wid)

– Square has one attribute (edge)

• Solution:

– Define inheritance based on shared

properties (attributes, methods) not just

conceptual similarity

5
 J

u
n

e
2

0
2

5

Lecture 10 46

© Prof. Amir Tomer

Association
• Relationship between classes that instances of them “know” each

other

– Knowing works via references and pointers

– Properties specific association

• Name: Can be read both ways

– Company employs person, Person employed by company

• Role

– Company is the employer, Person is the employee

• Multiplicity

– Company employs 0 or more Persons, Person is employed by 0 or 1 Companies

• Navigability

– Person knows who is its Company, Company does not know its Persons

5
 J

u
n

e
2

0
2

5

Lecture 10 47

Company

Person

employ

+employer

+employee0..*

0..1

role

name

multiplicity

navigability

© Prof. Amir Tomer

Aggregation

Lecture 10 48

5
 J

u
n

e
2

0
2

5

• A special kind of association (knowing): B has-a A

Composite Aggregation

• A is an integral part of B and only of B

• A exists only due to B

• AKA: Whole-part aggregation, Non-
shared aggregation

Shared Aggregation

• A is part of B, but

• A can exist without B

• A can be shared between other
objects

© Prof. Amir Tomer

Aggregation Example
5

 J
u

n
e

2
0

2
5

Lecture 10 49

Paragraph

Style

Paragraph Word

Font

Style

Character

Style

1..* 1..*11

Navigation:

• Character knows its

style

• Style doesn’t know

characters it applies to

1

0..*

1. A Numbered Title

 This is the first paragraph of this

document. It contains 17 words

and 80 non-blank charac
t
ers.Shared aggregation:

• A paragraph has one

Paragraph Style

• Paragraph style can apply

to many paragraphs

• Paragraph style is an

independent entity and

can exist without any

paragraphs

• Deleting a paragraph

doesn’t delete the style

1

0..*

Composite aggregation:

• Paragraph has at least one word

• Each word in the paragraph belongs to only one paragraph

• Words exist only within a paragraph

• Deleting a paragraph deletes all the words within

© Prof. Amir Tomer

Software level functional analysis
• As with functional analysis before, we need to do software functional analysis (objects,

classes)

• As a start, software elements are classes in the PDOM → Then assign methods and

functionality

– We may add classes later as necessary

• Sources of functionality

– Software architecture: Implement processes found in the sequence diagrams

• When assigning functionality, preserve “Specialization” and “Independence”

– Tight cohesion: What is the common ground among data and methods in the class?

– Weak coupling: How much is a class dependent on others?

5
 J

u
n

e
2

0
2

5

Lecture 10 50

© Prof. Amir Tomer

System level functional analysis
• We did the following at the system architecture level

5
 J

u
n

e
2

0
2

5

Lecture 10 51

1. Find functionality in use cases 2. Break down into components

3. Implement processes using

sequence diagrams

© Prof. Amir Tomer

Elevator system – Base class diagram from PDOM
5

 J
u

n
e

2
0

2
5

Lecture 10 52

Ignoring classes that represent people:

User, Technician, Rescuer, Maintenance Engineer

© Prof. Amir Tomer

Software level functional analysis
• Perform the steps above on the level below

5
 J

u
n

e
2

0
2

5

Lecture 10 53

1. Find functionality in seq. diagrams 2. Find classes, attributes, and methods

See next slide

3. Implement functionality via interactions

© Prof. Amir Tomer

Assigning component functionality to classes
5

 J
u

n
e

2
0

2
5

Lecture 10 54

NewClass

A

A

B

B

X

Y

Z

Build A = X+Z

Build B = X+Y+NewClass

Sequence

diagrams

with

components

A and B

Classes

initially

identified

in the

PDOM

© Prof. Amir Tomer

Example: Regular Elevator Operations
5

 J
u

n
e

2
0

2
5

Lecture 10 55

ref

Travelling between Floors

© Prof. Amir Tomer

Elevator System: Elevator Class
5

 J
u

n
e

2
0

2
5

Lecture 10 56

In addition to these attributes,

the pointers to other classes

that are derived from

associations and aggregations

In addition to these attributes

and methods, there are

inherited attributes and

methods

© Prof. Amir Tomer

Tracking functional requirements to class diagram

• Classes in the class diagram must fulfill all system functionality

• Every functional requirement (FR) must point to one or more classes that fulfill it

– Participate in an OR

• E.g. “If the button wasn’t previously lit, it turns on after being pressed” → Button

– Provide data structures for DR

• E.g. “Every floor has two buttons” → Floor

• Each class in the class diagram must refer to the FR related to it

5
 J

u
n

e
2

0
2

5

Lecture 10 57

© Prof. Amir Tomer

Automatic Static Code from Class Diagram – Attributes
5

 J
u

n
e

2
0

2
5

Lecture 10 58

Class

Role

public class Elevator {

 private Dir direction;

 private boolean isActive;

 private boolean isInOrder;

 private int lastStop;

 public ElevatorButton MyButtons;

 public Door MyDoor;

 public Schedule MySchedule;

 public RescueButton MyRB;

 public Floor ServedFloors;

 public Engine MyEngine;

 public StopButton MySB;

Explicitly defined

attributes

Attributes

derived from

associations

Class Role

© Prof. Amir Tomer

Automatic Static Code from Class Diagram – Methods
5

 J
u

n
e

2
0

2
5

Lecture 10 59

public class Elevator {

 public Elevator(){ }

 public void finalize() throws Throwable { }

 public emergencyStop(){}

 public int getStatus(){

 return 0;

 }

 public rescueCall(){}

 public void startOperation(){ }

 public int wait(int Sec){}

Constructor

Destructor

Explicitly defined

methods

© Prof. Amir Tomer

Automatic Static Code from Class Diagram – Method Inheritance

5
 J

u
n

e
2

0
2

5

Lecture 10 60

public class FloorButton extends TravelButton {

 public up_down dirLabel;

 public FloorButton(){ }

 public void finalize() throws Throwable {

 super.finalize();

 }

}

public abstract class TravelButton extends Button {

 private boolean LED;

 public TravelButton(){ }

 public void finalize() throws Throwable {

 super.finalize();

 }

 public void setLED(byte on_off){ }

}

«abstract»

TravelButton

- LED: boolean

+ setLED(byte): void

FloorButton

+ di rLabel : up_down

«abstract,vi rtua l»
Button

+ press (): void

public abstract class Button {

 public Button(){ }

 public void finalize() throws Throwable { }

 public void press(){ }

}

© Prof. Amir Tomer

Conclusion
• Composite Architecture

• PDOM

• Class Model

5
 J

u
n

e
2

0
2

5

Lecture 10 61

	Default Section
	Slide 1
	Slide 2: Topics for Today

	Composite Architecture
	Slide 3: Building Composite Architecture
	Slide 4: System Architecture: SIS architecture includes
	Slide 5: Functional interfaces via physical interfaces
	Slide 6: Connection between functional and physical interfaces
	Slide 7: Delegation
	Slide 8: Difference between Logical and Physical architectures
	Slide 9: Building composite architecture: Step 1
	Slide 10: Building composite architecture: Step 2
	Slide 11: Building composite architecture: Step 3.1
	Slide 12: Building composite architecture: Step 3.1
	Slide 13: Elevator System Physical Architecture (v2)
	Slide 14: Elevator composite architecture B
	Slide 15: Elevator System Physical Architecture (v3)
	Slide 16: Elevator composite architecture C
	Slide 17: Physical architecture in UML: Software components and deployment
	Slide 18: Deployment diagram with installed artifacts
	Slide 19: Connection between artifacts and components
	Slide 20: In class assignment: Composite Architecture
	Slide 21: In class assignment: Building artifacts and installation

	Problem Domain Modeling
	Slide 22: So Far
	Slide 23: Planning software structure
	Slide 24: What we have so far
	Slide 25: Object Oriented Design
	Slide 26: Traffic light vs. Roundabout
	Slide 27: Object Oriented Paradigm
	Slide 28: Problem space and Solution Space
	Slide 29: OO Modeling of Problem Space
	Slide 30: Semantic network
	Slide 31: Semantic network
	Slide 32: Semantic network
	Slide 33: Operational Specification: Elevator System
	Slide 34: Operational Specification: Elevator System
	Slide 35: List of Elevator Concepts
	Slide 36: Elevator PDOM
	Slide 37: In class assignment: PDOM

	Class Models
	Slide 38: So Far
	Slide 39: Software Elements: Objects and Classes
	Slide 40: Creating and Operating Objects
	Slide 41: Candidates for Objects in Software
	Slide 42: Class Diagram - Syntax
	Slide 43: Class Diagram - Syntax
	Slide 44: Inheritance and Generalization
	Slide 45: Problems with inheritance
	Slide 46: Problems with inheritance
	Slide 47: Association
	Slide 48: Aggregation
	Slide 49: Aggregation Example
	Slide 50: Software level functional analysis
	Slide 51: System level functional analysis
	Slide 52: Elevator system – Base class diagram from PDOM
	Slide 53: Software level functional analysis
	Slide 54: Assigning component functionality to classes
	Slide 55: Example: Regular Elevator Operations
	Slide 56: Elevator System: Elevator Class
	Slide 57: Tracking functional requirements to class diagram
	Slide 58: Automatic Static Code from Class Diagram – Attributes
	Slide 59: Automatic Static Code from Class Diagram – Methods
	Slide 60: Automatic Static Code from Class Diagram – Method Inheritance
	Slide 61: Conclusion

