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Topics for Today
• Composite Architecture

• PDOM

• Class Model
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Building Composite Architecture

• Our goals: 

– Integrate the software and hardware architectures

– Connect physical interfaces to logical interfaces

• Inputs:

– Component Diagram

– Deployment diagram

• Outputs:

– Composite diagram

– Build and deployment plans for

software on the hardware
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[System architecture: Structure]

Note: We took a step up to complete

the system architecture



© Prof. Amir Tomer 

System Architecture: SIS architecture includes

Lecture 10 4
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1. Physical architecture: Hardware components and physical connections – static model (structure)

2. Logical architecture: Software components and logical connections – static model (structure)

3. Process architecture: Implementation of processes via interaction between components  - dynamic 

model (behavior)

4. Composite architecture: Implementation of logical connections via physical connections – static 

model (structure)

SIS

HW 
Element

HW 
Element

SW
Element

SW 
Element

. . .. . .

1. Physical architecture2. Logical architecture - components

4. Composite architecture and deployment of SW on HW

3. Process architecture

Processes (Use Cases)
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Functional interfaces via physical interfaces

Lecture 10 5
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Connection between functional and physical interfaces

Lecture 10 6
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• Sometimes one or more execution environment layers stand between functional and physical 

interfaces

– Passage through each layer requires a specialized mechanism

– The passage point is called a “port” and is shown with a small square

– For simplicity, we might compress a few ports into a single general one

<<PC>>

User’s Laptop

<<operating system>>
Windows 10

<<browser>>
Chrome

internet

MyApp

<<PC>>
User’s Laptop

MyApp
internet
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Delegation

Delegation from Provided interface

• The component provides the service to 

the external environment via the port

• Requests arrive at the port and are 

forwarded to the appropriate interface

Delegation from a Required interface

• The component receives the service 

from the external environment via the 

port

• Requests for the service leave via the 

port to the external environment
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An internal interface can’t directly contact the outside environment → it needs a port to represent it

Computer (+ OS + Execution Env.)

Component

<<delegate>>

<<delegate>>
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Difference between Logical and Physical architectures

Physical

• Physical architecture is built for a specific 

system

• Each configuration has its own physical 

architecture

Logical

• Logical architecture is more generic

• Can use the same components for many 

systems

– Many “builds”

• Connections between interfaces are 

implemented based on its physical location

– Direct connection: components in same software 

(e.g. included, compiled)

– Dependency: different software, same computer 

(e.g. DLL)

– Via port: different computers, different software 

(e.g. client-server)
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Building composite architecture: Step 1

Lecture 10 9
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• Choose a physical architecture and decide how to break the components between the 

computers

• Elevator physical architecture A
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Building composite architecture: Step 2

Lecture 10 10
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• Create the composite diagram (can also do one diagram per computer)

– Put the computers from the architecture in

– For each physical connection, add a port
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Building composite architecture: Step 3.1

Lecture 10 11
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• Place the functional components in the physical computers

• Connect the free interfaces to ports via <<delegate>> connections

• Connect internal dependencies with assembly connector
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Building composite architecture: Step 3.1
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Elevator System Physical Architecture (v2)

Lecture 10 13
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• Network architecture

– Central server and elevators connected via a wireless network

– Technician comes with a laptop and connects to the system via the network



© Prof. Amir Tomer 

Elevator composite architecture B
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Elevator System Physical Architecture (v3)

Lecture 10 15
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• Centralized architecture

– The whole system is controlled and operated by a single computer with IoT connections to all 

devices

– External services (operation and control) are offered remotely via the internet
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Elevator composite architecture C
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Physical architecture in UML: Software components and deployment

Artifact

• Two kinds

• Artifacts that exist in the given 
computational environment (e.g., 
SendMsg.dll)

• Artifacts created during 
development (e.g., MyProg.exe)

Deployment

• A dependency between a 
software artifact and the node it’s 
installed on

Deployment Diagram

• Diagram that shows the 
deployment of software on 
hardware

• In practice, the hardware 
diagram showing where software 
is
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Node

Artifact

<<deploy>>
NodeA

Artifact1

NodeB

Artifact2

link/protocol
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Deployment diagram with installed artifacts

• Example: In-car navigation
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Artifacts that are part of the platform

Artifacts created during dev.
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Connection between artifacts and components

• Components = Development code modules

• Artifacts = installed files (.exe)

• Components are “built” into artifacts

– Artifacts offer the components they are built of

– The offer is reflected by the <<manifest>> dependency

• Artifacts are installed on computers in the physical architecture

– Example elevator architecture A
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In class assignment: Composite Architecture

• Create a new Composite Architecture diagram for ePark

– Drag components and hardware nodes from your existing 

physical and logical architecture diagrams

– Add ports for physical connections

– Add  “User Port” for user interfaces (GUI)

– Connect external interfaces to ports using Delegate arrows
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In class assignment: Building artifacts and installation

• Create a new Deployment Diagram called “Build Allocation”

– Drag into it the components from the Component View

– Based on the composite architecture, define new artifacts

– Create <<manifest>> relationships between components and artifacts

– Install the artifacts on the on the physical architecture

• Perform the steps above on the ePark architecture

– Work using the steps shown in the slides before
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So Far
• Composite Architecture

• PDOM

• Class Model
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Planning software structure

• Our goals: 

– Define the modules (classes that yield objects) that comprise the software

– Assign functionality to classes (attributes and methods)

• Inputs:

– Component Diagram

– Component-level sequence diagrams

• Outputs:

– Class diagram
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What we have so far
• We built a software architecture that includes

– Structure: the internal and external connections between parts – component diagram

– Behavior: the interaction between components to implement tasks – sequence diagrams
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Object Oriented Design
• We need to break down each software component next
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Goals

• Implement each 
component’s functionality

Ingredients

• Software modules 
(classes) that will 
comprise them

Structure

• The connections between 
various objects

Behavior

• The interaction between 
the objects & between 
them and the environment 
that implements 
functionality

A

B

D

C

Comp1

A

B

D

C a:A c:C

b:B
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Traffic light vs. Roundabout
Traffic light intersection

• Vehicles are passive

• The algorithm is known only to the 

traffic light

• Traffic light manages all vehicles

Roundabout intersection

• Vehicles are active

• Each vehicle knows the algorithm

• Each vehicle manages itself and its 

interactions with other vehicles
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Object Oriented Paradigm
Object

• Specific entity

• Borders and identity defined

• Encapsulates state and behavior

– State = data members, data structures

– Behavior = member methods, functions

Class

• Descriptor of a set of objects with 

shared attributes

– Properties, actions, relationships, behavior
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Classes exist in code

only at code time

Objects exist in memory

only at run time
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Problem space and Solution Space
• A development process solves a problem or a need by mapping from the problem space to the solution space

– Solution space: Technology, engineering results

– Problem space varies from system to system

• Example: Information Systems Technology

– Solution space: Data records, files, reports, transactions

– Problem space 1: A bank = {branch, customer, account, transfers}

– Problem space 2: A hospital = {department, test, patient, diagnosis}

Test  Department

Patient  Medical status
Hospital

Branch         Account

Transfer  Customer
Bank

Record

ReportTransaction

FileInformation Systems Technology5
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OO Modeling of Problem Space
• OO allows us to build software that 

matches the problem environment

– We later add solution-specific elements

• During system analysis we can build a 

structured models of objects that 

reflect the problem space

– Problem domain object model (PDOM)

• Goal: Clarify and specify concepts 

and their relationships

– Create a common language for 

stakeholders

• Uses:

– Resolve contradictions and gray 

areas

– System glossary

– Basis for software objects

• Technique: Semantic network

5
 J

u
n

e 
2

0
2

5

Lecture 10 29



© Prof. Amir Tomer 

Semantic network
• Collection of concepts and 

relationships between them

• UML recognizes three kinds of 

relationships

– Kind of

– Part of/Has a

– Relates to

• A is a B

– A Boy is a kind of Person

– A Girl is a kind of Person
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Semantic network
• Collection of concepts and 

relationships between them

• UML recognizes three kinds of 

relationships

– Kind of

– Part of/Has a

– Relates to

• A has a B

– A Head is part of a Person

– A Person has a Child
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Semantic network
• Collection of concepts and 

relationships between them

• UML recognizes three kinds of 

relationships

– Kind of

– Part of/Has a

– Relates to

• A <relates to> B

– A Boy works with a Girl
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Operational Specification: Elevator System

A passenger who is on a particular floor and wants to call an elevator presses the appropriate 

button for the direction of travel (up or down).  If the button was not already lit, the button 

lights up after being pressed.  An elevator car traveling in the requested direction will arrive at 

the floor within one minute at most.  When the car arrives, the door opens and the light on 

the button turns off.

A passenger who is in an elevator car and wants to travel to a particular floor presses on the 

button associated with the desired floor.  If the button wasn’t already lit, the button lights up 

and a new stop request for the floor is registered.  The door closes.  After a short pause, the 

car continues moving.  It stops at every floor for which there is a stop request.  When the car 

stops at a floor, the door opens and the button for the floor turns off.

A passenger can stop the elevator car when its moving by pressing on the emergency stop 

button.  In that case, the elevator stops immediately and all registered stop requests are 

erased.  Afterwards, the elevator can resume operation by pressing a button for any floor.
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Operational Specification: Elevator System

If the elevator gets stuck while in operation, passengers can call for help using the emergency 

rescue button.  The rescuer (the building maintenance engineer) will access the emergency 

panel in the machine room and perform operations to move the elevator car to the bottom 

floor and open the door.

The maintenance engineer is responsible to start up the elevators at the beginning of the day 

and to shut it down at the end of the day.  The technician comes once every 6 months and 

performs a complete check of the system and fixes problems using the technician panel in the 

machine room.

The elevator system must meet all applicable safety rules.

The system must be accessible to the handicapped.
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List of Elevator Concepts
• Passenger

• Floor

• Elevator

• Directional button (floor)

• Door

• Floor button (in car)

• Stop request

• Emergency stop

• Rescue panel

• Maintenance engineer

• Check/Test

• Problems/faults

• Technician
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Elevator PDOM
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“is a kind of”

“part of”

relation



© Prof. Amir Tomer 

In class assignment: PDOM
• Create a PDOM for the ePark system

– Use the Class Diagram Toolbox in Enterprise Architect

– Include the following concepts (you can add your own if you need)

1. Child’s Guardian

2. Account

3. Child

4. eTicket

5. Bracelet

6. Entry

7. Attraction (device)

8. Supervisor
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So Far
• Composite Architecture

• PDOM

• Class Model
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Software Elements: Objects and Classes

Objects

• Basic elements of software

• Every object manages its information 

via internal functionality (methods)

• Objects exist in memory while the 

program is running

– Can create and destroy them dynamically

– Constructor, Destructor

• Every object has at least one handle or 

pointer to it in memory

Classes

• Forms out of which objects are created

• Contain three elements

• Defined in code by the programmer

• Objects are instances of classes
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Creating and Operating Objects
Create a new object theBlueCar = new Car()

Initialize car details theBlueCar.make = “Mazda”
theBlueCar.model = “CX-8”

Licensing and registration theBlueCar.licenseplate = “12-345-67”
theBlueCar.registrationDate = 08/09/2021

Selling theBlueCar.sellTo(Lior)

Function sellTo (X){
   owner = X;
}
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Car

+ maker:  string

+ model:  string

+ licensePlate:  string

+ testDate:  Date

- owner:  Person

+ sellTo(Person) : void

+ getOwner(int) : Person

+ testIsValid(Date) : boolean

theBlueCar : Car

maker = “Mazda”

model = “CX-8”

licensePlate = “12-345-67”

registrationDate = 08/09/2020

owner = Lior

Class nameObject name
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Candidates for Objects in Software
Objects that represent physical entities

• Door, Engine, Workstation

• Attributes:

• Parameters and data about the entity

• Input/output

• Methods: Physical functionality

• Serve as a stand-in or interface to physical object

Objects that represent logical entities

• Process, Service

• Attributes:

• Parameters and data about the entity

• Input/Output

• Methods:

• Operations the entity can do

Objects that represent data entities

• Databases, data stores, lists, queues

• Attributes:

• Data elements managed by the object

• Methods:

• Data operations (store, retrieve, modify)
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Class Diagram - Syntax
Class

• Name

• Attributes (variables)

– Private (-): Can only be accessed from within the 

class

– Public (+): Can be accessed also externally

– Protected (#): Can be accessed within the package 

or by sub-classes

• Methods (Functions)

– Private (-): Can only be called from within the class

– Public (+): Can be called also externally

– Protected (#): Can be called within the package or 

by sub-classes
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Class Diagram - Syntax

A B

Association

A B

Inheritance

A B

Aggregation
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Class diagrams are based on the principles of semantic networks
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Inheritance and Generalization
• When class B inherits from Class A

– B has all of A’s attributes

– B has all of A’s methods

– B can also do more stuff

• Inheritance is “B is-an A”

• B is a “sub-class” of A

– B can do more than A

• Inheritance creates hierarchical relationships

• Abstract classes

– A class you can’t make instances of

– All instances are of subclasses (e.g. vehicle)
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Elevator Button

•ID: Floor

Floor Button

•Direction {Up, Down

Button

•Lit (Yes/No)

•Press

•Turn On/Off
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Problems with inheritance
Multiple Inheritance

• One class inherits from multiple 

classes

• Problem:

– Might lead to contradictions in attributes 

or methods

• Solution:

– Most programming languages don’t allow 

multiple inheritance (force tree-like 

structure)

Deep Inheritance

• A ⊲ − B ⊲ − C ⊲ − D ⊲ − … ⊲ − X

• Problem:

– Keeping track of connections 

(maintainability)

• Solution:

– Break the chain where connection is weak
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Problems with inheritance
False Inheritance

• Example: A square is a type of 

rectangle, so Rectangle ⊲ − Square

• Problem:

– Rectangle has two attributes (len, wid)

– Square has one attribute (edge)

• Solution:

– Define inheritance based on shared 

properties (attributes, methods) not just 

conceptual similarity
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Association
• Relationship between classes that instances of them “know” each 

other

– Knowing works via references and pointers

– Properties specific association

• Name: Can be read both ways

– Company employs person, Person employed by company

• Role

– Company is the employer, Person is the employee

• Multiplicity

– Company employs 0 or more Persons, Person is employed by 0 or 1 Companies

• Navigability

– Person knows who is its Company, Company does not know its Persons
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Company

Person

employ

+employer

+employee0..*

0..1

role

name

multiplicity

navigability
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Aggregation

Lecture 10 48
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• A special kind of association (knowing): B has-a A

Composite Aggregation

• A is an integral part of B and only of B

• A exists only due to B

• AKA: Whole-part aggregation, Non-
shared aggregation

Shared Aggregation

• A is part of B, but

• A can exist without B

• A can be shared between other 
objects
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Aggregation Example
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Paragraph

Style

Paragraph Word

Font

Style

Character

Style

1..* 1..*11

Navigation:

• Character knows its 

style

• Style doesn’t know 

characters it applies to

1

0..*

1. A Numbered Title

 This is the first paragraph of this 

document. It contains 17 words 

and 80 non-blank charac
t
ers.Shared aggregation:

• A paragraph has one 

Paragraph Style

• Paragraph style can apply 

to many paragraphs

• Paragraph style is an 

independent entity and 

can exist without any 

paragraphs

• Deleting a paragraph 

doesn’t delete the style

1

0..*

Composite aggregation:

• Paragraph has at least one word

• Each word in the paragraph belongs to only one paragraph

• Words exist only within a paragraph

• Deleting a paragraph deletes all the words within
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Software level functional analysis
• As with functional analysis before, we need to do software functional analysis (objects, 

classes)

• As a start, software elements are classes in the PDOM → Then assign methods and 

functionality

– We may add classes later as necessary

• Sources of functionality

– Software architecture: Implement processes found in the sequence diagrams

• When assigning functionality, preserve “Specialization” and “Independence”

– Tight cohesion: What is the common ground among data and methods in the class?

– Weak coupling: How much is a class dependent on others?
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System level functional analysis
• We did the following at the system architecture level
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1. Find functionality in use cases 2. Break down into components

3. Implement processes using 

sequence diagrams
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Elevator system – Base class diagram from PDOM
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Ignoring classes that represent people:

User, Technician, Rescuer, Maintenance Engineer
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Software level functional analysis
• Perform the steps above on the level below
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1. Find functionality in seq. diagrams 2. Find classes, attributes, and methods

See next slide

3. Implement functionality via interactions
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Assigning component functionality to classes
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NewClass

A

A

B

B

X

Y

Z

Build A = X+Z

Build B = X+Y+NewClass

Sequence 

diagrams 

with 

components 

A and B

Classes 

initially 

identified 

in the 

PDOM



© Prof. Amir Tomer 

Example: Regular Elevator Operations
5

 J
u

n
e 

2
0

2
5

Lecture 10 55

ref

Travelling between Floors
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Elevator System: Elevator Class
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In addition to these attributes, 

the pointers to other classes 

that are derived from 

associations and aggregations

In addition to these attributes 

and methods, there are 

inherited attributes and 

methods
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Tracking functional requirements to class diagram

• Classes in the class diagram must fulfill all system functionality

• Every functional requirement (FR) must point to one or more classes that fulfill it

– Participate in an OR

• E.g. “If the button wasn’t previously lit, it turns on after being pressed” → Button

– Provide data structures for DR

• E.g. “Every floor has two buttons” → Floor

• Each class in the class diagram must refer to the FR related to it
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Automatic Static Code from Class Diagram – Attributes
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Class

Role

public class Elevator {

 private Dir direction;

 private boolean isActive;

 private boolean isInOrder;

 private int lastStop;

 public ElevatorButton MyButtons;

 public Door MyDoor;

 public Schedule MySchedule;

 public RescueButton MyRB;

 public Floor ServedFloors;

 public Engine MyEngine;

 public StopButton MySB;

Explicitly defined 

attributes

Attributes 

derived from 

associations

Class Role
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Automatic Static Code from Class Diagram – Methods
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public class Elevator {

 

 public Elevator(){ }

 public void finalize() throws Throwable { }

 public emergencyStop(){}

          public int getStatus(){

  return 0;

 }

 public rescueCall(){}

 public void startOperation(){ }

 public int wait(int Sec){}

 

Constructor

Destructor

Explicitly defined 

methods
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Automatic Static Code from Class Diagram – Method Inheritance
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public class FloorButton extends TravelButton {

 public up_down dirLabel;

 public FloorButton(){ }

 public void finalize() throws Throwable {

  super.finalize();

 }

}

public abstract class TravelButton extends Button {

 private boolean LED;

 public TravelButton(){ }

 public void finalize() throws Throwable {

  super.finalize();

 }

 public void setLED(byte on_off){ }

}

«abstract»

TravelButton

- LED: boolean

+ setLED(byte): void

FloorButton

+ di rLabel : up_down

«abstract,vi rtua l»
Button

+ press (): void

public abstract class Button {

 public Button(){ }

 public void finalize() throws Throwable { }

 public void press(){ }

}



© Prof. Amir Tomer 

Conclusion
• Composite Architecture

• PDOM

• Class Model
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