
© Prof. Amir Tomer

Slides created by

Prof Amir Tomer

tomera@cs.technion.ac.il

Engineering Software Intensive Systems

Jacquard Loom

1804

Introduction
Lecture 1

20 March 2025

mailto:tomera@cs.kinneret.ac.il

© Prof. Amir Tomer

Topics for Today

• Introduction to Software Intensive Systems

• Software from a Systems Perspective

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 2

© Prof. Amir Tomer

Motivation: Most systems developed today are
software intensive

Text source: http://blissfulwriter.hubpages.com/hub/Software-Code-in-Your-Car
Picture source: http://www.ramanmedianetwork.com/ibm-software-drives-chevrolet-volt/

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 3

http://blissfulwriter.hubpages.com/hub/Software-Code-in-Your-Car
http://www.ramanmedianetwork.com/ibm-software-drives-chevrolet-volt/

© Prof. Amir Tomer

Where is the software?

• Component/Element Level

– Software operates the

element/component in the system

• Ex: Antilock Braking System

– Implementation based on:

Software Design

• System Level

– Software coordinates, synchronizes, enables joint operation of all parts of the

system

• Ex: Central computer on a communication network

– Implementation based on: System and Software Architecture

• System of Systems

– Software enables interoperability between different systems

• Ex: Communication between autonomous vehicles and stop lights

– Implementation based on: Network Architecture

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 4

© Prof. Amir Tomer

Course Goals
• Transition from programming to developing software

intensive systems
– See the bigger picture

• System level

• The entire lifecycle

– Focus on the whole development process (not just on the product)

• Personal experience with a software project

– The various steps and milestones

– Teamwork

• What you will get out of it

– Understand how software is developed and the problems faced doing so

– Understand central processes and advanced software engineering
methods

– Understand how the processes and methods affect the quality and
reliability of software

– Get a fundamental understanding of how to work on a software
development team

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 5

© Prof. Amir Tomer

Course Details and Requirements

Meetings

• 13 lectures, 4 hours each

• Lecture contents found on
the syllabus and course
home page

Recitations

• Lectures integrate recitations
and practice tasks with MS
Office and Enterprise
Architect

Course Requirements

• Attendance

• Turn in semester project (teams of 3-4 students)

• Project grade is the course grade (no exam)

• Project contains only the planning part of the project

• Development can be done on your own for another course

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 6

© Prof. Amir Tomer

What’s special about software
• Complexity

– Number of potential states
• It’s hard to understand everything

• It’s hard to test everything

• Conformity

– Software has no physical restraints
• It must adapt itself to everything else

• It must make up for limitations in other disciplines

• Invisibility

– There is no tangible physical model

• Changeability and Maintainability

– Upgrade cost = development time only
• No physical materials

• No production cost (except reinstallation)

• No packaging and shipping

– No component failure
• Every failure is a design failure

• If one copy fails, all will fail

• How do you define “reliable software”?

“…building software will

always be hard. There is

inherently no silver bullet.”

F. Brooks (1986)*

*Brooks, F.P., No Silver Bullet: Essence and Accidents of Software Engineering, IFIP 10th World Computing Conference, 19862
0

 M
ar

ch
 2

0
2

5

Lecture 1 8

© Prof. Amir Tomer

Complexity
• How many states can the window be in?

~3018

~3040

~3050

~3040

~10255

= 12 X 2 X 60 X 60 X 24 X

 12 X 31 X 100 = 77,137,920,000

= 360 X 2 X 60 X 60 = 2,592,000

= 360 X 2 X 60 X 60 = 2,592,000

~1021

• Can you analyze all the states?

• Can you check every possible state of the program?

MSExcel 2007: 850 * 77.1 = ?2
0

 M
ar

ch
 2

0
2

5

Lecture 1 9

© Prof. Amir Tomer

Complexity – Non-Deterministic Software

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 10

© Prof. Amir Tomer

Conformity

• Add additional abilities to hardware (mechanical, electronic)

– Overcome physical limitations

– Increase accuracy, speed, etc.

– Add or change properties

– Fix exceptions after the fact

• Software is delivered at the end of the development process

– But you must take the software’s properties into consideration from

the very beginning.

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 11

© Prof. Amir Tomer

Invisibility
• Can you describe software using a physical model?

harbour%2520bridge

Theatre

index

?

CV63_A7_1s

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 12

http://images.google.com/imgres?imgurl=http://rottenburger.bei.t-online.de/Urlaub/harbour%20bridge.jpg&imgrefurl=http://rottenburger.bei.t-online.de/Urlaub/sydney.html&h=585&w=862&sz=49&tbnid=lBRKZNsom6EJ:&tbnh=97&tbnw=142&start=47&prev=/images?q=bridge&start=40&hl=iw&lr=&sa=N
http://images.google.com/imgres?imgurl=http://www.npcc.bc.ca/images/Theatre.jpg&imgrefurl=http://www.npcc.bc.ca/&h=407&w=603&sz=60&tbnid=zVq55kwsmLwJ:&tbnh=89&tbnw=131&start=1&prev=/images?q=theatre&hl=iw&lr=
http://images.google.com/imgres?imgurl=http://www.baileysprivatecarhire.co.uk/images/index.2.gif&imgrefurl=http://www.baileysprivatecarhire.co.uk/&h=267&w=422&sz=75&tbnid=QBK3hj1Cm9AJ:&tbnh=77&tbnw=121&start=83&prev=/images?q=car+private&start=80&hl=iw&lr=&sa=N
http://images.google.com/imgres?imgurl=http://www.yellowairplane.com/pics/CV63_A7_1s.jpg&imgrefurl=http://www.yellowairplane.com/USS_Kitty_Hawk.htm&h=212&w=266&sz=7&tbnid=I2QcvuB_t6QJ:&tbnh=86&tbnw=107&start=5&prev=/images?q=light+airplane+US&hl=iw&lr=

© Prof. Amir Tomer

Invisibility – How do LLMs work?
2

0
 M

ar
ch

 2
0

2
5

Lecture 1 13

© Prof. Amir Tomer

Changeability and Maintainability

• Software is a “changeable” product

– Software doesn’t need raw materials

– Development tools are cheap (sort of) and available

– There is no “production” process

– Changing the model is quick and easy

• Therefore…

– Software products can be expected to undergo regular changes and

updates.

Maintenance (i.e. fixes,

updates, adaptation)

takes up the majority of a

software’s lifetime.

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 14

© Prof. Amir Tomer

“Random” Singular Bugs
• The embarrassing “bug” in Excel 2007

850x77.1 = 65,535 = 1111111111111111b

• The message that crashed iOS (in 2017, then another one in 2020)

• The input that crashed Skype

 http://:

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 15

© Prof. Amir Tomer

Toyota unintended acceleration

http://www.eetimes.com

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 16

http://www.eetimes.com/

© Prof. Amir Tomer

When garbage is invisible
If software was made of wood…

… at the end of the project, everything would be covered in a

mountain of sawdust.

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 17

© Prof. Amir Tomer

Software: Academic training for careers

CS, SE, etc.

Programmer
Software
Engineer

Software
architect

5 ~ Years5 ~ Years

?

Software

Construction
Worker

Building
engineer

Architect

Vocational
training

Civil
Engineering

Architecture

Construction

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 18

© Prof. Amir Tomer

So Far

• Introduction to Software Intensive Systems

• Software from a Systems Perspective

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 19

© Prof. Amir Tomer

Software Product = the final result of the software
development process

Lecture 1 20

2
0

 M
ar

ch
 2

0
2

5

Standalone application
(app)

• Software is provided
separately (disk, digital
download)

• Meant to be installed on a
standard platform (computer,
smartphone) owned by the
user that includes an OS and
basic programs

• Games, bank account
management software

Embedded software

• Software is provided inside
hardware (specialized)

• With an OS and underlying
software as a single product

• Car, medical device

Software as a Service

• Software isn’t transferred to
the customer or owned by her

• Customer just receives the
required services

• Google search, Office 365

• Software Product: The set of computer programs, procedures,

and possibly associated documentation and data [various software

standards]

• The software product is delivered in one of 3 ways

© Prof. Amir Tomer

Software from a Systems Perspective

• A system (definition)

– A combination of organized elements (components) that interact to achieve one or

more declared goals [ISO/IEC/IEEE 15288]

• A system in a hierarchical/recursive structure

– System components can be systems themselves

• System of Scope

– The system the development process is working on, including all activities and products

• Software Intensive System

– System in which software plays an important part in terms of functionality,

development cost, development risks, or development time

System

Component System

Component System

Component Component

Component

System

Component Component

System
of Scope

Comp
onent

Comp
onent

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 21

© Prof. Amir Tomer

System of Scope and its interfaces with the
environment [ISO/IEC/IEEE 15288]

Enabling

System A

Enabling

System B

Enabling

System CInteraction with Enabling

Systems during system life

cycle (except for operational

stage)

System of

Scope

System B in

Operational

Environment

System A in

Operational

Environment

System C in

Operational

Environment

Interaction with systems

that make up the

Operational Environment

of the System of Scope

Man-Machine

Interactions with

users/operators2
0

 M
ar

ch
 2

0
2

5

Lecture 1 22

© Prof. Amir Tomer

System Attributes

Lecture 1 23

2
0

 M
ar

ch
 2

0
2

5

Environment

• External
factors
(human, non-
human) that
the system
works with

Goal(s)

• Solution to the
problem/need
(customer,
stakeholder)

Ingredients

• Parts of the
solution

Organization
(Structure)

• Connections
between
ingredients

• Connections
between the
system (and
its parts) and
the
environment

Interaction
(Behavior)

• Interaction
between
elements or
between
elements and
the
environment to
achieve the
goal

• Systems (at any level) are defined by the following attributes

© Prof. Amir Tomer

In Class Practice
• Moodle is made up of the following elements

– User interface

– Teacher interface – edit content

– Student interface – view content

– Database of data and content

• Moodle as a System

– What is its goal?

– How are the components organized (organizational figure, structure)?

– How do the parts interact?

– To what other systems is it connected? (Environment)

– What larger system is it part of?

Padlet link on Moodle

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 24

© Prof. Amir Tomer

Org/

Business

Organization/Business Level
The operational framework in which

the system will be installed and

serve

Typical levels of scope in development of SIS

SISSIS
EquipmentPeople. . .

Computer System Level
HW/SW system that serves the

organization for some purpose

HW

Element

HW

Element

SW

Compo

nent

SW

Compo

nent
.

Software Component Level
Software is installed on the

HW and users/other

systems work with it

SW

Element

SW

Element . . .

Software Element Level
Elements the app is built from

Build elements: e.g. libraries

Runtime elements: e.g. DLLs

SW UnitSW Unit . . .Software Unit Level
Code modules (e.g. classes)

which make up elements

Organizational

Users Other

stakeholders

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 25

© Prof. Amir Tomer

Hospital

Organization/Business Level
Hospital the system is installed in
Medical goal: diagnosis/treatment

Work logic: Medical procedure

Levels of scope: Medical system

CT System
Monitoring

system

Med.

Equip.

MD

Operators
. . .

Computer System Level
HW/SW system that helps hospital offer

services
Operational task: CT imaging

Work logic: Take image, process, display

Display

worksta

tion

Bed +

Camera

Imaging

program

Software Component Level
Specialized software, task specific
Technical task: produce a series of images

Work logic: Operate the machine

Camera

control

Bed

Control . . .

Software Element Level
Parts the software is built from
Build elements: image processing libraries

Runtime elements: Control tracking libraries

SW UnitSW Unit . . .Software Unit Level
Code modules (e.g. classes)

which make up elements

Users:

Patients Stakeholders:

Medical regulators

Researchers

Public

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 26

Display

Program

© Prof. Amir Tomer

Car

Organization/Business Level
???
Goal: ???

Work logic: ???

Levels of scope: In-car navigation (exercise)

In-car

navigation
???

Equipment

:

???

People:

???
. . .

Computer System Level
???

Operational goal: ???

Work logic: ???

Nav

applicat

ion
.

Software Component Level
???

Technical goal: ???

Work logic: ???

Navigation

element

SW

Element . . .

Software Element Level
Elements the app is built from

Build elements: ???

Runtime elements: ???

Class …Class … . . .Software Unit Level
Code modules (e.g. classes)

which make up elements

Users:

??? Stakeholders:

???

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 27

Fill in ???

© Prof. Amir Tomer

Conclusion

• Introduction to Software Intensive Systems

• Software from a Systems Perspective

2
0

 M
ar

ch
 2

0
2

5

Lecture 1 29

20 March 2025 Lecture 1 30

Personal Introduction
Instructor: Michael J. May

Ph.D. in Computer Science University of Pennsylvania, Philadelphia

Courses I teach (2nd year):

• Software Intensive Systems Engineering הנדסת מערכות עתירות תוכנה

Third year:

• Operating Systems מערכות הפעלה

• Introduction to Computer Networks מבוא לרשתות מחשבים

Fourth year:

• Communication and Information Security אבטחת תקשורת ומידע

• Distributed Systems מערכות מבוזרות

• Advanced Computer Networks רשתות מחשבים מתקדמות

My Research

Digitizing Cemeteries

• Optical character
recognition

• Machine learning

• Historical analysis

Secure
communications

• Better communication
techniques

• Formal analysis

Intelligent file
processing

• File lifecycle

• Content aware
differencing

20 March 2025 Lecture 1 31

20 March 2025 Lecture 1 32

33

About My Courses

• On the course page:

– Syllabus, course location and

time

– Lecture schedule

– Lecture slides (PDF)

– Targil summaries (if I run them)

– Reminders about assignment

due dates (normally)

– Code, programming data

• On Moodle:

– Assignment solutions and

grades

– Previous tests

– Other course announcements

(changes, extensions, updates,

etc).

– Targil materials (if I don’t run

them)

https://www2.kinneret.ac.il/mjmay

Every course has a web page and a Moodle page

20 March 2025 Lecture 1

34

In Class
• Come to class on time (after 10 minutes, the door is locked)

• Don’t talk during class or disturb others – raise your hand.

• Read what I ask you to

• Perform and submit assignments on time

– Late policy (same for all courses)

– Don’t ask for personal extensions

– Miluim, births, etc. as per the college policy

• Come to office hours if you need extra help

• If you have a complaint or request – try asking me first

• Don’t copy or turn in duplicate assignments

– Group work policy per course

– “We worked on it together” is not acceptable

– Don’t copy from the internet

• Correct me (respectfully) if I make mistakes, say something silly, etc.

20 March 2025 Lecture 1

	Slide 1
	Slide 2: Topics for Today
	Slide 3: Motivation: Most systems developed today are software intensive
	Slide 4: Where is the software?
	Slide 5: Course Goals
	Slide 6: Course Details and Requirements
	Slide 8: What’s special about software
	Slide 9: Complexity
	Slide 10: Complexity – Non-Deterministic Software
	Slide 11: Conformity
	Slide 12: Invisibility
	Slide 13: Invisibility – How do LLMs work?
	Slide 14: Changeability and Maintainability
	Slide 15: “Random” Singular Bugs
	Slide 16: Toyota unintended acceleration
	Slide 17: When garbage is invisible
	Slide 18: Software: Academic training for careers
	Slide 19: So Far
	Slide 20: Software Product = the final result of the software development process
	Slide 21: Software from a Systems Perspective
	Slide 22: System of Scope and its interfaces with the environment [ISO/IEC/IEEE 15288]
	Slide 23: System Attributes
	Slide 24: In Class Practice
	Slide 25
	Slide 26
	Slide 27
	Slide 29: Conclusion
	Slide 30: Personal Introduction
	Slide 31: My Research
	Slide 32
	Slide 33: About My Courses
	Slide 34: In Class

