
14 Dec 2025 SE 317: Operating Systems 1

Monitors, Barriers,

Readers/Writers

14 December 2025

Lecture 8

Slides adapted from John Kubiatowicz (UC Berkeley)

Concept Review

Atomic
Reads and

Writes
Starvation

Race
condition

Mutual
exclusion

Critical
section

Lock

• Spin lock

• In-Kernel lock

Busy waiting Semaphores

14 Dec 2025 SE 317: Operating Systems 2

Topics for Today

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language

14 Dec 2025 SE 317: Operating Systems 3

Concepts today

14 Dec 2025 SE 317: Operating Systems 4

Why Monitors and Condition Variables?

Semaphores are a
huge step up

• Try to do the bounded
buffer with only loads and
stores

Problem:

• Semaphores are dual
purpose:

• They are used for both
mutex and scheduling
constraints

Example:

• That flipping P’s in bounded
buffer gives deadlock is not
immediately obvious.

• How do you prove
correctness to someone?

Cleaner idea:

• Use locks for mutual
exclusion and condition
variables for scheduling
constraints

14 Dec 2025 SE 317: Operating Systems 5

What is a Monitor?

Monitor:

• A lock and zero or more condition variables for
managing concurrent access to shared data

Some
languages like
Java provide
this natively

Most others use
actual locks and

condition
variables

14 Dec 2025 SE 317: Operating Systems 6

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data

– Lock initially free

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: make it possible to go to sleep inside critical section by

atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

14 Dec 2025 SE 317: Operating Systems 7

14 Dec 2025 SE 317: Operating Systems 8

Simple Monitor Example (version 1)

• Here is an (infinite) synchronized queue

 Lock lock;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Lock shared data
 queue.enqueue(item); // Add item
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Lock shared data
 item = queue.dequeue(); // Get next item or null
 lock.Release(); // Release Lock
 return(item); // Might return null
 }

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables

– Cannot put consumer to sleep if no work!

14 Dec 2025 SE 317: Operating Systems 9

Condition Variables
• How do we change the RemoveFromQueue() routine to wait until

something is on the queue?

– Could do this by keeping a count of the number of things on the

queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for something

inside a critical section

– Key idea: allow sleeping inside critical section by atomically

releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

14 Dec 2025 SE 317: Operating Systems 10

Condition Variables
• Operations:

• Rule: Must hold lock when doing condition variable ops!

14 Dec 2025 SE 317: Operating Systems 11

Wait(&lock):

• Atomically release
lock and go to sleep.
Reacquire lock later,
before returning.

Signal():

• Wake up one waiter, if
any

Broadcast():

• Wake up all waiters

Complete Monitor Example (with condition variable)

• Here is an (infinite) synchronized queue

 Lock lock;
 Condition dataready;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Get Lock
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
 lock.Release(); // Release Lock
 return(item);
 }

14 Dec 2025 SE 317: Operating Systems 12

Mesa vs. Hoare monitors

• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep

 }

 item = queue.dequeue(); // Get next item

• Why didn’t we do this?
 if (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep

 }

 item = queue.dequeue(); // Get next item

14 Dec 2025 SE 317: Operating Systems 13

Hoare-style (textbooks):

• Signaler gives lock and CPU to

waiter

• Waiter runs immediately

• Waiter gives lock and CPU

back to signaler when it exits

critical section or waits again

Mesa-style (most real OS):

• Signaler keeps lock and

processor

• Waiter placed on ready queue

with no special priority

• Practically, need to check

condition again after wait

14 Dec 2025 SE 317: Operating Systems 14

Mesa vs. Hoare scheduling

So Far

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language

14 Dec 2025 SE 317: Operating Systems 15

Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 16

Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 17

Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 18

Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 19

Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 20

Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 21

Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 22

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 23

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 24

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 25

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 26

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 27

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 28

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 29

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 30

Reusable Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 31

So Far

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language

14 Dec 2025 SE 317: Operating Systems 32

Extended example: Readers/Writers Problem

14 Dec 2025 SE 317: Operating Systems 33

Motivation: Consider a shared database

• Two classes of users:

– Readers – never modify database

– Writers – read and modify database

• Is using a single lock on the whole database sufficient?

– Allow many readers at the same time

– Only one writer at a time

W

R R

R

Basic Readers/Writers Solution

• Correctness Constraints:

– Readers can access database when no writers

– Writers can access database when no readers or writers

– Only one thread manipulates state variables at a time

• Basic structure of a solution:

– Reader()

 Wait until no writers

 Access data base

 Check out – wake up a waiting writer

– Writer()

 Wait until no active readers or writers

 Access database

 Check out – wake up waiting readers or writer

14 Dec 2025 SE 317: Operating Systems 34

Basic Readers/Writers Solution

• State variables (Protected by a lock called “lock”):

– int AR: Number of active readers; initially = 0

– int WR: Number of waiting readers; initially = 0

– int AW: Number of active writers; initially = 0

– int WW: Number of waiting writers; initially = 0

– Condition okToRead = NIL

– Condition okToWrite = NIL

14 Dec 2025 SE 317: Operating Systems 35

Code for a Reader
Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.Acquire();
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer
 lock.Release();
}

14 Dec 2025 SE 317: Operating Systems 36

Why?

Code for a Writer
Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}

14 Dec 2025 SE 317: Operating Systems 37

Why?

Why?

Simulation R/W Step 1
• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
 while ((AW + WW) > 0) { // Is it safe to read?

 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
}

 AR++; // Now we are active!

• First, R1 comes along:
 AR = 1, WR = 0, AW = 0, WW = 0

• Second, R2 comes along:
 AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database

– Situation: Locks released

– Only AR is non-zero

14 Dec 2025 SE 317: Operating Systems 38

Simulation R/W Step 2
• Next, W1 comes along:

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

• Can’t start because of readers, so go to sleep:

 AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1:

 AR = 1, WR = 1, AW = 0, WW = 1
• Finally, last of first two readers (R1) finishes and wakes up

a writer:
 if (AR == 0 && WW > 0) // No other active readers

 okToWrite.signal(); // Wake up one writer

14 Dec 2025 SE 317: Operating Systems 39

Simulation R/W Step 3

• When the writer wakes up, get:

 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:

 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }

• Writer wakes up reader, so get:

 AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

14 Dec 2025 SE 317: Operating Systems 40

Questions about R/W
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
}

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
 AR--; // No longer active

 okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

14 Dec 2025 SE 317: Operating Systems 41

Monitors Conclusion
• Monitors represent the logic of the program

– Wait if necessary

– Signal when you change something so any waiting threads can
proceed

• Basic structure of monitor-based program:
 lock

while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

14 Dec 2025 SE 317: Operating Systems 42

Check or update state variables.

Wait if necessary

Check or update state variables.

So Far

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language

14 Dec 2025 SE 317: Operating Systems 43

C-Language Support for Synchronization

• C language: Straightforward synchronization
– Just make sure you know all the code paths out of a critical

section

 int Rtn() {
 lock.acquire();
 …
 if (exception) {
 lock.release();
 return errReturnCode;
 }
 …
 lock.release();
 return OK;
}

– Watch out for setjmp/longjmp!
• Can cause a non-local jump out of procedure

• In example, procedure E calls longjmp, popping stack back to
procedure B

• If Procedure C had lock.acquire, problem!

14 Dec 2025 SE 317: Operating Systems 44

Proc A

Proc B

Calls setjmp

Proc C

Lock.acquire()

Proc D

Proc E

Calls longjmp

S
ta

c
k
 g

ro
w

th

→

C++ Language Support for Synchronization

• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy to make a
non-local exit without releasing lock)

– Consider:

 void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Notice that an exception in DoFoo() will exit without releasing the
lock!

14 Dec 2025 SE 317: Operating Systems 45

C++ Language Support for Synchronization

• Must catch all exceptions in critical sections
– Catch exceptions, release lock, and re-throw exception:

 void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Even Better: auto_ptr<T> facility. See C++ Spec.
• Can deallocate/free lock regardless of exit method

14 Dec 2025 SE 317: Operating Systems 46

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
 class Account {
 private int balance;
 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

– Every object has an associated lock which gets automatically
acquired and released on entry and exit from a synchronized method.

14 Dec 2025 SE 317: Operating Systems 47

Java Language Support for Synchronization

Java also has synchronized blocks:

int i, j;

void foo() {

Object locker = new Object();

 synchronized (locker) {
 i += j;
}

}

• Since every Java object has one associated lock, the
statement acquires and releases the object’s lock on entry
and exit of the block

• Problem is that the code here doesn’t protect anything.
Why?

14 Dec 2025 SE 317: Operating Systems 48

Java Language Support for Synchronization

A better form of the code:

Object locker = new Object();

int i, j;

void foo() {

 synchronized (locker) {
 i += j;
}

}

• Now all threads will use the same lock and we’ll get some

mutual exclusion.

14 Dec 2025 SE 317: Operating Systems 49

Java Language Support for Synchronization

• Works properly even with exceptions:

 synchronized (locker) {
 …
 DoFoo();
 …
 }
 void DoFoo() {
 throw errException;
 }

• Lock is released when the exception is thrown.

14 Dec 2025 SE 317: Operating Systems 50

Java Language Support for Synchronization

• Every object also has one condition variable associated

with it

– How to wait inside a synchronization method of block:

• void wait(long timeout); // Wait for timeout

• void wait(long timeout, int nanoseconds); //variant

• void wait();

– How to signal in a synchronized method or block:

• void notify(); // wakes up oldest waiter

• void notifyAll(); // like broadcast, wakes everyone

14 Dec 2025 SE 317: Operating Systems 51

Java Language Support for Synchronization

• Condition variables can wait for a bounded length of time.

This is useful for handling exception cases:

 t1 = time.now();

 while (!ATMRequest()) {

 wait (CHECKPERIOD);

 t2 = time.new();

 if (t2 – t1 > LONG_TIME) checkMachine();

 }

• Not all Java VMs equivalent!

• Different scheduling policies, not necessarily preemptive!

14 Dec 2025 SE 317: Operating Systems 52

Conclusion

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language

14 Dec 2025 SE 317: Operating Systems 53

	Default Section
	Slide 1: Monitors, Barriers, Readers/Writers 14 December 2025 Lecture 8
	Slide 2: Concept Review
	Slide 3: Topics for Today
	Slide 4: Concepts today

	Monitors
	Slide 5: Why Monitors and Condition Variables?
	Slide 6: What is a Monitor?
	Slide 7: Monitor with Condition Variables
	Slide 8
	Slide 9: Simple Monitor Example (version 1)
	Slide 10: Condition Variables
	Slide 11: Condition Variables
	Slide 12: Complete Monitor Example (with condition variable)
	Slide 13: Mesa vs. Hoare monitors
	Slide 14: Mesa vs. Hoare scheduling

	Barrier Synchronization
	Slide 15: So Far
	Slide 16: Barrier Synchronization - 3
	Slide 17: Barrier Synchronization - 3
	Slide 18: Barrier Synchronization - 3
	Slide 19: Barrier Synchronization - 3
	Slide 20: Barrier Synchronization - 3
	Slide 21: Barrier Synchronization - 3
	Slide 22: Barrier Synchronization - 3
	Slide 23: Reusable Barrier Synchronization - 3
	Slide 24: Reusable Barrier Synchronization - 3
	Slide 25: Reusable Barrier Synchronization - 3
	Slide 26: Reusable Barrier Synchronization - 3
	Slide 27: Reusable Barrier Synchronization - 3
	Slide 28: Reusable Barrier Synchronization - 3
	Slide 29: Reusable Barrier Synchronization - 3
	Slide 30: Reusable Barrier Synchronization - 3
	Slide 31: Reusable Barrier Synchronization - 3

	Readers and Writers
	Slide 32: So Far
	Slide 33: Extended example: Readers/Writers Problem
	Slide 34: Basic Readers/Writers Solution
	Slide 35: Basic Readers/Writers Solution
	Slide 36: Code for a Reader
	Slide 37: Code for a Writer
	Slide 38: Simulation R/W Step 1
	Slide 39: Simulation R/W Step 2
	Slide 40: Simulation R/W Step 3
	Slide 41: Questions about R/W
	Slide 42: Monitors Conclusion

	Mutual Exclusion High Level
	Slide 43: So Far
	Slide 44: C-Language Support for Synchronization
	Slide 45: C++ Language Support for Synchronization
	Slide 46: C++ Language Support for Synchronization
	Slide 47: Java Language Support for Synchronization
	Slide 48: Java Language Support for Synchronization
	Slide 49: Java Language Support for Synchronization
	Slide 50: Java Language Support for Synchronization
	Slide 51: Java Language Support for Synchronization
	Slide 52: Java Language Support for Synchronization
	Slide 53: Conclusion

