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Concept Review

Atomic 
Reads and 

Writes
Starvation

Race 
condition

Mutual 
exclusion

Critical 
section

Lock

• Spin lock

• In-Kernel lock

Busy waiting Semaphores
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Topics for Today

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language
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Concepts today
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Why Monitors and Condition Variables?

Semaphores are a 
huge step up

• Try to do the bounded 
buffer with only loads and 
stores

Problem:

• Semaphores are dual 
purpose:

• They are used for both 
mutex and scheduling 
constraints

Example:

• That flipping P’s in bounded 
buffer gives deadlock is not 
immediately obvious.

• How do you prove 
correctness to someone?

Cleaner idea:

• Use locks for mutual 
exclusion and condition 
variables for scheduling 
constraints
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What is a Monitor?

Monitor:

• A lock and zero or more condition variables for 
managing concurrent access to shared data

Some 
languages like 
Java provide 
this natively

Most others use 
actual locks and 

condition 
variables
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Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data

– Lock initially free

• Condition Variable: a queue of threads waiting for 
something inside a critical section
– Key idea: make it possible to go to sleep inside critical section by 

atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
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Simple Monitor Example (version 1)

• Here is an (infinite) synchronized queue

  Lock lock;
 Queue queue;

  AddToQueue(item) {
  lock.Acquire(); // Lock shared data
  queue.enqueue(item); // Add item
  lock.Release(); // Release Lock
 }

  RemoveFromQueue() {
  lock.Acquire(); // Lock shared data
  item = queue.dequeue(); // Get next item or null
  lock.Release(); // Release Lock
  return(item); // Might return null
 }

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables

– Cannot put consumer to sleep if no work!
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Condition Variables
• How do we change the RemoveFromQueue() routine to wait until 

something is on the queue?

– Could do this by keeping a count of the number of things on the 

queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for something 

inside a critical section

– Key idea: allow sleeping inside critical section by atomically 

releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
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Condition Variables
• Operations:

• Rule: Must hold lock when doing condition variable ops!
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Wait(&lock):

• Atomically release 
lock and go to sleep. 
Reacquire lock later, 
before returning. 

Signal():

• Wake up one waiter, if 
any

Broadcast():

• Wake up all waiters



Complete Monitor Example (with condition variable)

• Here is an (infinite) synchronized queue

  Lock lock;
 Condition dataready;
 Queue queue;

  AddToQueue(item) {
  lock.Acquire(); // Get Lock
  queue.enqueue(item); // Add item
  dataready.signal(); // Signal any waiters
  lock.Release(); // Release Lock
 }

  RemoveFromQueue() {
  lock.Acquire(); // Get Lock
  while (queue.isEmpty()) {
   dataready.wait(&lock); // If nothing, sleep
  }
  item = queue.dequeue(); // Get next item
  lock.Release(); // Release Lock
  return(item);
 }
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Mesa vs. Hoare monitors

• Need to be careful about precise definition of signal and 

wait.  Consider a piece of our dequeue code:
   while (queue.isEmpty()) {

   dataready.wait(&lock); // If nothing, sleep

  }

  item = queue.dequeue(); // Get next item

• Why didn’t we do this?
   if (queue.isEmpty()) {

   dataready.wait(&lock); // If nothing, sleep

  }

  item = queue.dequeue(); // Get next item
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Hoare-style (textbooks):

• Signaler gives lock and CPU to 

waiter

• Waiter runs immediately

• Waiter gives lock and CPU 

back to signaler when it exits 

critical section or waits again

Mesa-style (most real OS):

• Signaler keeps lock and 

processor

• Waiter placed on ready queue 

with no special priority

• Practically, need to check 

condition again after wait
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So Far

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language

14 Dec 2025 SE 317: Operating Systems 15



Barrier Synchronization - 3
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Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 17



Barrier Synchronization - 3
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Barrier Synchronization - 3
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Barrier Synchronization - 3

14 Dec 2025 SE 317: Operating Systems 20



Barrier Synchronization - 3
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Barrier Synchronization - 3
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Reusable Barrier Synchronization - 3
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Reusable Barrier Synchronization - 3
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Reusable Barrier Synchronization - 3
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So Far

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language
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Extended example: Readers/Writers Problem
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Motivation: Consider a shared database

• Two classes of users:

– Readers – never modify database

– Writers – read and modify database

• Is using a single lock on the whole database sufficient?

– Allow many readers at the same time

– Only one writer at a time

W

R R

R



Basic Readers/Writers Solution

• Correctness Constraints:

– Readers can access database when no writers

– Writers can access database when no readers or writers

– Only one thread manipulates state variables at a time

• Basic structure of a solution:

– Reader()

   Wait until no writers

   Access data base

   Check out – wake up a waiting writer

– Writer()

   Wait until no active readers or writers

   Access database

   Check out – wake up waiting readers or writer
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Basic Readers/Writers Solution

• State variables (Protected by a lock called “lock”):

– int AR: Number of active readers; initially = 0

– int WR: Number of waiting readers; initially = 0

– int AW: Number of active writers; initially = 0

– int WW: Number of waiting writers; initially = 0

– Condition okToRead = NIL

– Condition okToWrite = NIL
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Code for a Reader
Reader() {
 // First check self into system
 lock.Acquire();

  while ((AW + WW) > 0) { // Is it safe to read?
  WR++; // No. Writers exist
  okToRead.wait(&lock); // Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 lock.release();

  // Perform actual read-only access
 AccessDatabase(ReadOnly);

  // Now, check out of system
 lock.Acquire();
 AR--;  // No longer active
 if (AR == 0 && WW > 0) // No other active readers
  okToWrite.signal(); // Wake up one writer
 lock.Release();
}
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Code for a Writer
Writer() {
 // First check self into system
 lock.Acquire();

  while ((AW + AR) > 0) { // Is it safe to write?
  WW++; // No. Active users exist
  okToWrite.wait(&lock); // Sleep on cond var
  WW--; // No longer waiting
 }

  AW++;  // Now we are active!
 lock.release();

  // Perform actual read/write access
 AccessDatabase(ReadWrite);

  // Now, check out of system
 lock.Acquire();
 AW--;  // No longer active
 if (WW > 0){ // Give priority to writers
  okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
  okToRead.broadcast(); // Wake all readers
 } 
 lock.Release();
}
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Why?



Simulation R/W Step 1
• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
 while ((AW + WW) > 0) { // Is it safe to read?

 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
}

  AR++; // Now we are active!

• First, R1 comes along:
 AR = 1, WR = 0, AW = 0, WW = 0

• Second, R2 comes along:
 AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database

– Situation: Locks released

– Only AR is non-zero
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Simulation R/W Step 2
• Next, W1 comes along:

 while ((AW + AR) > 0) { // Is it safe to write?
  WW++; // No. Active users exist
  okToWrite.wait(&lock); // Sleep on cond var
  WW--; // No longer waiting
 }

  AW++; 

• Can’t start because of readers, so go to sleep:

  AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along:

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1:

 AR = 1, WR = 1, AW = 0, WW = 1
• Finally, last of first two readers (R1) finishes and wakes up 

a writer:
  if (AR == 0 && WW > 0) // No other active readers

  okToWrite.signal(); // Wake up one writer
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Simulation R/W Step 3

• When the writer wakes up, get:

 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:

  if (WW > 0){           // Give priority to writers
  okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
  okToRead.broadcast(); // Wake all readers
 } 

• Writer wakes up reader, so get:

 AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished
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Questions about R/W
• Can readers starve?  Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
}

  AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
  AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers
  okToWrite.signal(); // Wake up one writer 

• Further, what if we turn the signal() into broadcast()
  AR--; // No longer active

 okToWrite.broadcast(); // Wake up one writer 

• Finally, what if we use only one condition variable (call it 
“okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()
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Monitors Conclusion
• Monitors represent the logic of the program

– Wait if necessary

– Signal when you change something so any waiting threads can 
proceed

• Basic structure of monitor-based program:
 lock 

while (need to wait) {
   condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock
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Check or update state variables.

Wait if necessary

Check or update state variables.



So Far

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language
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C-Language Support for Synchronization

• C language: Straightforward synchronization
– Just make sure you know all the code paths out of a critical 

section

 int Rtn() {
  lock.acquire();
  …
  if (exception) {
   lock.release();
   return errReturnCode;
  }
  …
  lock.release();
  return OK;
}

– Watch out for setjmp/longjmp!
• Can cause a non-local jump out of procedure

• In example, procedure E calls longjmp, popping stack back to 
procedure B

• If Procedure C had lock.acquire, problem!
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Proc B

Calls setjmp

Proc C

Lock.acquire()

Proc D

Proc E

Calls longjmp
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C++ Language Support for Synchronization

• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy to make a 
non-local exit without releasing lock)

– Consider:

  void Rtn() {
  lock.acquire();
  …
  DoFoo();
  …
  lock.release();
 }
 void DoFoo() {
  …
  if (exception) throw errException;
  …
 }

– Notice that an exception in DoFoo() will exit without releasing the 
lock!
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C++ Language Support for Synchronization

• Must catch all exceptions in critical sections
– Catch exceptions, release lock, and re-throw exception:

 void Rtn() {
  lock.acquire();
  try {
   …
   DoFoo();
   …
  } catch (…) { // catch exception
   lock.release(); // release lock
   throw; // re-throw the exception
  }
  lock.release();
 }
 void DoFoo() {
  …
  if (exception) throw errException;
  …
 }

– Even Better: auto_ptr<T> facility.  See C++ Spec.
• Can deallocate/free lock regardless of exit method
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Java Language Support for Synchronization

• Java has explicit support for threads and thread 
synchronization

• Bank Account example:
 class Account {
  private int balance;
  // object constructor
  public Account (int initialBalance) {
   balance = initialBalance;
  }
  public synchronized int getBalance() {
   return balance;
  }
  public synchronized void deposit(int amount) {
   balance += amount;
  }
 }

– Every object has an associated lock which gets automatically 
acquired and released on entry and exit from a synchronized method.

14 Dec 2025 SE 317: Operating Systems 47



Java Language Support for Synchronization

Java also has synchronized blocks:

int i, j;

void foo() { 

Object locker = new Object();  

 synchronized (locker) {
 i += j;
}

}

• Since every Java object has one associated lock, the 
statement acquires and releases the object’s lock on entry 
and exit of the block

• Problem is that the code here doesn’t protect anything.  
Why?
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Java Language Support for Synchronization

A better form of the code:

Object locker = new Object();

int i, j;  

void foo() { 

 synchronized (locker) {
 i += j;
}

}

• Now all threads will use the same lock and we’ll get some 

mutual exclusion.
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Java Language Support for Synchronization

• Works properly even with exceptions:

  synchronized (locker) {
  …
  DoFoo();
  …
 }
 void DoFoo() {
  throw errException;
 }
  

• Lock is released when the exception is thrown.
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Java Language Support for Synchronization

• Every object also has one condition variable associated 

with it

– How to wait inside a synchronization method of block:

• void wait(long timeout); // Wait for timeout

• void wait(long timeout, int nanoseconds); //variant

• void wait();

– How to signal in a synchronized method or block:

• void notify(); // wakes up oldest waiter

• void notifyAll(); // like broadcast, wakes everyone
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Java Language Support for Synchronization

• Condition variables can wait for a bounded length of time. 

This is useful for handling exception cases:

  t1 = time.now();

 while (!ATMRequest()) {

  wait (CHECKPERIOD);

  t2 = time.new();

  if (t2 – t1 > LONG_TIME) checkMachine();

 }

• Not all Java VMs equivalent! 

• Different scheduling policies, not necessarily preemptive!
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Conclusion

• Higher Level Synchronization Atoms

– Monitors

– Barrier Synchronization

– Example: Readers and Writers

• Mutual Exclusion

– Mutual Exclusion in High Level Language
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