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Topics for Today

« Higher Level Synchronization Atoms
— Monitors
— Barrier Synchronization
— Example: Readers and Writers
* Mutual Exclusion
— Mutual Exclusion in High Level Language
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Why Monitors and Condition Variables?

Semaphores are a
huge step up
* Try to do the bounded

buffer with only loads and
stores

Problem:

« Semaphores are dual
purpose:
* They are used for both

mutex and scheduling
constraints

Example:

« That flipping P’'s in bounded
buffer gives deadlock is not
iImmediately obvious.

 How do you prove
correctness to someone?

Cleaner idea:

 Use locks for mutual
exclusion and condition
variables for scheduling
constraints
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What is a Monitor?

Monitor:

* A lock and zero or more condition variables for
managing concurrent access to shared data

Some Most others use

languages like actual locks and
Java provide condition
this natively variables
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Monitor with Condition Variables

* Lock: the lock provides mutual exclusion to shared data

— Always acquire before accessing shared data structure
— Always release after finishing with shared data

— Lock initially free

« Condition Variable: a queue of threads waiting for
something inside a critical section

— Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section
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Simple Monitor Example (version 1)

* Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {

lock.Acquire(); // Lock shared data
queue.enqueue(item); // Add item
) lock.Release(); // Release Lock
RemoveFromQueue() A
lock.Acquire(); // Lock shared data
item = queue.dequeue(); // Get next item or null
lock.Release(); // Release Lock
) return(item); // Might return null

* Not very interesting use of “Monitor”

— It only uses a lock with no condition variables
— Cannot put consumer to sleep if no work!

14 Dec 2025 SE 317: Operating Systems



Condition Variables

 How do we change the RemoveFromQueue() routine to wait until
something is on the queue?

— Could do this by keeping a count of the number of things on the
queue (with semaphores), but error prone

- Condition Variable: a queue of threads waiting for something
inside a critical section

— Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section
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Condition Variables

* QOperations:

Wait(&lock):

« Atomically release

Signal():

« Wake up one waiter, if

lock and go to sleep. any

Reacquire lock later,

before returning.

Broadcast():

« Wake up all waiters

* Rule: Must hold lock when doing condition variable ops!
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Complete Monitor Example (with condition variable)

« Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {

lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep

}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}
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Mesa vs. Hoare monitors

* Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:

while (queue.isEmpty()) {
dataready.wait(&lock); // If nothing, sleep

}

item = queue.dequeue(); // Get next item

 Why didn’t we do this?

if (queue.isEmpty()) {
dataready.wait(&lock); // If nothing, sleep

}

item = queue.dequeue(); // Get next item
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Mesa vs. Hoare scheduling

Hoare-style (textbooks):

« Signaler gives lock and CPU to

waiter
« Waiter runs immediately
« Waiter gives lock and CPU

back to signaler when it exits

Mesa-style (most real OS):

Signaler keeps lock and
processor

« Waiter placed on ready queue
with no special priority

Practically, need to check

critical section or waits again condition again after wait

14 Dec 2025
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So Far

* Higher Level Synchronization Atoms
— Monitors
— Barrier Synchronization
— Example: Readers and Writers
* Mutual Exclusion
— Mutual Exclusion in High Level Language
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So Far

* Higher Level Synchronization Atoms
— Monitors
— Barrier Synchronization
— Example: Readers and Writers
* Mutual Exclusion
— Mutual Exclusion in High Level Language
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Extended example: Readers/\Writers Problem

/ ;

Database

Motivation: Consider a shared database

« Two classes of users:
— Readers — never modify database
— Writers — read and modify database
» |s using a single lock on the whole database sufficient?
— Allow many readers at the same time
— Only one writer at a time
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Basic Readers/Writers Solution

 Correctness Constraints:
— Readers can access database when no writers

— Writers can access database when no readers or writers Database

— Only one thread manipulates state variables at a time

 Basic structure of a solution:

- Reader()
Wait until no writers
Access data base
Check out - wake up a waiting writer

- Writer()
Wait until no active readers or writers
Access database
Check out - wake up waiting readers or writer
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Basic Readers/Writers Solution

« State variables (Protected by a lock called “lock™):
- int AR: Number of active readers; initially = 0 D

— int WR: Number of waiting readers; initially = 0

— int AW: Number of active writers; initially = 0

— int WW: Number of waiting writers; initially = 0

— Condition okToRead = NIL

— Condition okToWrite = NIL
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Code for a Reader

Reader() {
// First check self into system
lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active! Why?

// Perform actual read-only access
AccessDatabase(ReadOnly);

// Now, check out of system
lock.Acquire();

AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

lock.Release();
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Code for a Writer

Writer() {
// First check self into system
lock.Acquire();

while ((AW + AR) > @) { // Is it safe to write?
WW++; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!

lock.release();

// Perform actual read/write access
AccessDatabase(ReadWrite);

// Now, check out of system

lock.Acquire();

AW- - ; // No longer active Why?

if (WW > 0){ // Give priority to writers
okToWrite.signal(); // Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
okToRead.broadcast(); // Wake all readers b

}

lock.Release(); Why?
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Simulation R/W Step 1

« Consider the following sequence of operators:
- R1, R2, W1, R3

* On entry, each reader checks the following:

while ((AW + WW) > @) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

« First, R1 comes along:

AR = 1, WR = 0, AW = 0O, WW
« Second, R2 comes along:

AR = 2, WR = 0, AW = 0, WW = ©
 Now, readers make take a while to access database

— Situation: Locks released
— Only AR is non-zero

0
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Simulation R/W Step 2

Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?

WW++ ; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
W - -; // No longer waiting

}

AW++;

Can't start because of readers, so go to sleep:
AR = 2, WR = 9, AW = 9, WW = 1
Finally, R3 comes along:
AR =2, WR =1, AW = 9, WW = 1
Now, say that R2 finishes before R1:
AR =1, WR = 1, AW = 9, WW = 1
Finally, last of first two readers (R1) finishes and wakes up

a writer:

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer
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Simulation R/W Step 3

When the writer wakes up, get:
AR = 9, WR =1, AW = 1, WW = ©

Then, when writer finishes:

if (WW > 0){ // Give priority to writers
okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

Writer wakes up reader, so get:
AR = 1, WR = 0, AW = O, WW = O

When reader completes, we are finished
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Questions about R/W

« Can readers starve? Consider Reader() entry code:

while ((AW + WW) > @) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
) WR--; // No longer waiting
AR++; // Now we are active!
« What if we erase the condition check in Reader exit?
AR--; // No longer active
[::$>if (AR == 0 && WW > ©0) // No other active readers
okToWrite.signal(); // Wake up one writer
* Further, what if we turn the signal() into broadcast()
AR--; // No longer active
okToWrite.broadcast(); // Wake up one writer

- Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?

— Both readers and writers sleep on this variable
— Must use broadcast() instead of signal()
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Monitors Conclusion

* Monitors represent the logic of the program
— Wait if necessary

- Signal when you change something so any waiting threads can
proceed

« Basic structure of monitor-based program:

lock
while (need to wait) { Check or update state variables.
) condvar.wait(); Wait if necessary

unlock
do something so no need to wait

lock

condvar.signal(); } Check or update state variables.

unlock
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So Far

« Higher Level Synchronization Atoms
— Monitors
— Barrier Synchronization
— Example: Readers and Writers
* Mutual Exclusion
— Mutual Exclusion in High Level Language
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C-Language Support for Synchronization

« C language: Straightforward synchronization
— Just make sure you know all the code paths out of a critical

section
int Rtn() { GCLs %
lock.acquire(); Proc B <
s . Calls setimp | €
if (exception) { %
lock.release(); Proc C =
return errReturnCode; Lock.acquire() |
} Proc D
lock.release(); Proc E
return OK; Calls longjmp

}
— Watch out for setjmp/longjmp!

« Can cause a non-local jump out of procedure

* In example, procedure E calls 1longjmp, popping stack back to
procedure B

 |f Procedure C had lock.acquire, problem!
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C++ Language Support for Synchronization

« Languages with exceptions like C++

— Languages that support exceptions are problematic (easy to make a
non-local exit without releasing lock)

— Consider:

void Rtn() {
lock.acquire();

DoFoo();

lock.release();

}
void DoFoo() {

if (exception) throw errException;

¥

— Notice that an exception in DoFoo () will exit without releasing the
lock!
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C++ Language Support for Synchronization

* Must catch all exceptions in critical sections

— Catch exceptions, release lock, and re-throw exception:
void Rtn() {
lock.acquire();

try {
BoFoo();

} catch (..) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

} {ock.release();
void DoFoo() {
if (exception) throw errException;

¥

— Even Better: auto_ptr<T> facility. See C++ Spec.
» Can deallocate/free lock regardless of exit method
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Java Language Support for Synchronization

« Java has explicit support for threads and thread
synchronization

« Bank Account example:

class Account {

private int balance;

// object constructor

public Account (int initialBalance) {
balance = initialBalance;

}

public synchronized int getBalance() {
return balance;

}

public synchronized void deposit(int amount) {
balance += amount;

}

¥

— Every object has an associated lock which gets automatically
acquired and released on entry and exit from a synchronized method.
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Java Language Support for Synchronization

Java also has synchronized blocks:
int i, j;
void foo() {
Object locker = new Object();

synchronized (locker) {
1 += 3;

}
}

« Since every Java object has one associated lock, the
statement acquires and releases the object’s lock on entry
and exit of the block

* Problem is that the code here doesn’t protect anything.
Why?
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Java Language Support for Synchronization

A better form of the code:
Object locker = new Object();
int i, j;
void foo() {

synchronized (locker) {
i += j;
}
}

* Now all threads will use the same lock and we’ll get some
mutual exclusion.
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Java Language Support for Synchronization

* Works properly even with exceptions:
synchronized (locker) {

DoFoo();

\ "
void DoFoo() {

throw errException;

¥

* Lock is released when the exception is thrown.
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Java Language Support for Synchronization

* Every object also has one condition variable associated
with it
— How to wait inside a synchronization method of block:
e void wait(long timeout); // Wait for timeout
e void wait(long timeout, int nanoseconds); //variant
e void wait();
— How to signal in a synchronized method or block:

e void notify(); // wakes up oldest waiter

e void notifyAll(); // like broadcast, wakes everyone
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Java Language Support for Synchronization

« Condition variables can wait for a bounded length of time.
This is useful for handling exception cases:
tl = time.now();
while (!ATMRequest()) {
wait (CHECKPERIOD);

t2 = time.new();
if (t2 - t1 > LONG_TIME) checkMachine();

}
* Not all Java VMs equivalent!

 Different scheduling policies, not necessarily preemptive!
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Conclusion

« Higher Level Synchronization Atoms
— Monitors
— Barrier Synchronization
— Example: Readers and Writers
* Mutual Exclusion
— Mutual Exclusion in High Level Language
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