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Topics for Today

« Cooperating threads

« Concurrency challenge

* Motivation for Synchronization and Locks
« Atomic Read-Modify-Write Operations

« Higher Level Synchronization Atoms
— Semaphores
— Monitors
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Programmer vs. Processor View

Programmer’s
View

X=X+1;

y=y+X,;
Z=X+5Yy;

Possible
Execution
#1

X=X+1;

y=Yy+X;
Z=X+5Y;

Possible
Execution
#2

X=X+1;
Thread suspended
Others run
Thread resumed
y=y+X;
Z=X+5y;

Possible
Execution
#3

X=X+1;
y=y+X;
Thread suspended
Others run
Thread resumed

Z=X+5y;
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Possible Executions

Thread 1
Thread 2

Thread 3

One Execution

Thread 1

Thread 2 _

Thread 3

Another Execution

Thread 1
Thread 2

Thread 3

A Third Execution

https://www.youtube.com/watch?v=YVrrw83U--I
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Multiprocessing vs Multiprogramming
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Why use Pretend At Once?

Most programs do nothing most of the time

Some tasks involve lots of waiting

;—l Users want to have multiple things running “at once”

@ Brain smooths over small time discontinuities
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Correctness for systems with concurrent threads

Dispatcher can schedule threads in any way -
programs must work under all circumstances

« Can you test this?

 How can you know if your program works?
|ldeal: Independent Threads

* No state shared with other threads

« Deterministic = Input state determines results

* Reproducible = Can recreate starting conditions,
/O

* Scheduling order doesn’t matter (if switch ()
works!)

Image credit: Steve Jurvetson (flickr)
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Correctness for systems with concurrent threads

» Reality: Cooperating Threads
— Shared State between multiple threads
— Non-deterministic
— Non-reproducible

Image credit: Youtube

* Non-deterministic and Non-reproducible
means bugs can be intermittent

— “Heisenbugs”
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Why allow cooperating threads?

* Advantage 1: Share resources
— One computer, many users

— One bank balance, many ATMs
« What if ATMs were only updated at night?

— Embedded systems (robot control: coordinate arm & hand)

7 Dec 2025 SE 317: Operating Systems
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Why allow cooperating threads?

« Advantage 2: Speedup

— Overlap 1/0 and computation
« Many different file systems do read-ahead

— Multiprocessors — chop up program into parallel pieces

* Advantage 3: Modularity 0
— More important than you might think I-l. t|
— Chop large problem up into simpler pieces I

« To compile, for instance, gcccallscpp | ccl | cc2 | as | 1d
* Makes system easier to extend

7 Dec 2025 SE 317: Operating Systems
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Interactions Complicate Debugging

* No programs are truly independent
— Processes share file system, OS resources, network, etc.
— Example: buggy device driver causes thread A to crash “independent
thread” B
* You don't realize how much you depend on reproducibility:

— Example: Evil C compiler

» Modifies files behind your back by inserting errors into C program unless you insert
debugging code

— Example: Debugging statements can overrun stack

7 Dec 2025 SE 317: Operating Systems
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Non-determinism makes things impossible

Example: Memory layout of Example: Something which does
kernel and user programs interesting 1/O

* Depends on scheduling, which
depends on timer/other things | « User typing of letters used to
help generate secure keys

» Original UNIX had a bunch of | * Can'tpredict >Can't test >
non-deterministic errors Can never be certain

7 Dec 2025 SE 317: Operating Systems 14
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Goal: Paradigms!

MY PROTECT IS . YOU KNOW . ..

A WHOLE NEW WHAT'S A HER-RER... | ('sERToUSLY, PARADIGM ,

PARADIGM . PARADIGM 7 WHATS A 1| WHAT IS PARADIGMISH. . .
PARADIGM " | | 1T

... FUNNY.

BUT ENOUGH ABOUT
MY PROJECT... TELL
US ABOUT YOUR
PROJECT.

MY PROTECT )
IS A PARA-
DI6M TOO.

AS IN "THIS PROJECT
IS A PARADIGM."

HEY BOUGHT }
T. 7 T

@ 1991 Unitsd Faature Syndecals, Inc

l I -3

Source: Dilbert (3 Nov 1991) by Scott Adams
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So Far

« Cooperating threads

« Concurrency challenge

* Motivation for Synchronization and Locks
« Atomic Read-Modify-Write Operations

« Higher Level Synchronization Atoms
— Semaphores
— Monitors
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Example: ATM Bank Server

ATR

 ATM server problem:
— Service a set of requests
— Don’t corrupt database
— Don’t hand out too much money

7 Dec 2025 SE 317: Operating Systems 18



Basic Bank Server Code

BankServer() {
while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctld, amount);

}

ProcessRequest(op, acctld, amount) {
if (op == deposit) Deposit(acctld, amount);
else if ..

}

Deposit(acctId, amount) {
acct = GetAccount(acctId); /* may use disk I/0 */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/0 */

7 Dec 2025 SE 317: Operating Systems
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What can go wrong?

* Requests proceeds to completion, blocking as required:

Deposit(acctId, amount) {

acct = GetAccount(actId); /* May use disk I/0 */
acct->balance += amount;

StoreAccount(acct); /* Involves disk I/0 */
}
« Unfortunately, shared state can get corrupted:
Thread 1 Thread 2

load rl1, acct->balance
load rl1l, acct->balance
add rl, amount2
store rl, acct->balance
add rl, amountl
store rl, acct->balance

7 Dec 2025 SE 317: Operating Systems
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Problem is at the lowest level

. Moat of the time, threads are working on separate data, so scheduling doesn't
matter:

Thread A Thread B
X = 1; y = 2;
« However, What about (Initially, y=12) :
Thread A Thread B
X = 1; y = 2;
X = y+1; y = ¥y*2;

— What are the possible values of x?

* Or, what are the possible values of x below?
Thread A Thread B
X = 1; X = 2;
— X could be 1 or 2 (non-deterministic!)
* Could even be 3 for serial processors:

— Thread A writes 0001, B writes 0010.
— Scheduling order ABABABBA yields 3!

7 Dec 2025 SE 317: Operating Systems 21



& ATOM ic Operations

* To understand a concurrent program, we need to know what the
underlying indivisible operations are!

« Atomic Operation: an operation that always runs to completion or
not at all

— It is indivisible: it cannot be stopped in the middle and state cannot be
modified by someone else in the middle

— Fundamental building block — if no atomic operations, then have no way for
threads to work together

7 Dec 2025 SE 317: Operating Systems 29
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(1966-1973)

“As always, should you or any of your IM force be caught
or killed, the Secretary will disavow any knowledge of
your actions.

“Good luck, Jim. This tape will self-destruct in five
seconds.”
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% ATOMic Operations

* On most machines, memory references and assignments (i.e.
loads and stores) of words are atomic

— Consequently — weird example that produces “3” on previous slide can’t
happen

* Many instructions are not atomic
— Double-precision floating point store often not atomic
— VAX and IBM 360 had an instruction to copy a whole array

7 Dec 2025 SE 317: Operating Systems
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Correctness Requirements

Threaded programs
must work for all
interleavings of
thread instruction
sequences

Cooperating threads
inherently non-
deterministic and
non-reproducible

NOTHING IIIS'I'IIM}I?ﬁIﬂMWY JOB
o

Really hard to
debug unless
carefully designed!

YOU ARE TECHNICALLY
CORRECT

@'
-»@;

Al
THE BEST KIND OF CORRECT.

: http://knowyourmeme.com/photos/909991-futurama |

| Image source
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Example: Therac-25

Machine for radiation therapy

— Software control of electron accelerator and electron
beam/
X-Ray production

— Software control of dosage

Software errors caused the death of several
patients

— A series of race conditions on shared variables and poor
software design

“They determined that data entry speed during
editing was the key factor in producing the error
condition: If the prescription data was edited at a
fast pace, the overdose occurred.”

Beam
on/off light

Figure 5: A typical Therac-25 facility after the final CAP.

7 Dec 2025 SE 317: Operating Systems
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Another Concurrent Program Example

 Two threads, A and B, compete with each other
— One tries to increment a shared counter
— The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)
i=1+1; i=1-1;
printf(“A wins!”); printf(“B wins!”);

* Assume that memory loads and stores are atomic, but incrementing and
decrementing are not atomic

 Who wins”? Could be either
 Is it guaranteed that someone wins? Why or why not?

« What if both threads have their own CPU running at same speed? Is it
guaranteed that it goes on forever?

7 Dec 2025 SE 317: Operating Systems 27



Hand Simulation Multiprocessor Example

* Inner loop looks like this:

Thread A Thread B
r1=0 load rl, M[i]
rl=0 load rl, M[i]
ri=1 add ri1, rl, 1

ril=-1 sub rl, ri1, 1

M[i]=1 store rl, M[i] . .
M[i]=-1 store rl, M[i]

 Hand Simulation:
— And we’re off. A gets off to an early start
— B says “hmph, better go fast” and tries really hard
— A goes ahead and writes “1”

— B goes and writes “-1"
— A says ‘HUH?7?? | could have sworn | put a 1 there”

« Could this happen on a uniprocessor?

— E)(es'kUnllker, but if you are depending on it not happening, it will and your system will
reak...

7 Dec 2025 SE 317: Operating Systems



So Far

« Cooperating threads

« Concurrency challenge

* Motivation for Synchronization and Locks
« Atomic Read-Modify-Write Operations

« Higher Level Synchronization Atoms
— Semaphores
— Monitors
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Motivation: “Too much humus”

» Great thing about OS’s — analogy between problems in

real life

— Help you understand real life problems better
— But, computers are much stupider than people

 Example: People need to coordinate:

OS and problems in

Time | Alice Bob

3:00 | Look in Fridge. Out of humus.

3:05 | Leave for store

3:10 | Arrive at store Look in Fridge. Out of humus.

3:15 | Buy humus Leave for store

3:20 | Arrive at home, put humus away | Arrive at store

3:25 Buy humus

3:30 Arrive at home, put humus away

7 Dec 2025

SE 317: Operating Systems

30



Definitions

Synchronization: using atomic Mutual Exclusion: ensuring that

operations to ensure cooperation only one thread does a

between threads particular thing at a time

« For now, only loads and stores are * One thread excludes the other while
atomic doing its task

» We are going to show that its hard to
build anything useful with only reads
and writes

Critical Section: piece of code that only one thread can execute at once.
Only one thread at a time will get into this section of code.

« Critical section is the result of mutual exclusion
« Critical section and mutual exclusion are two ways of describing the same thing.

7 Dec 2025 SE 317: Operating Systems
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More Definitions

* Lock: prevents someone from doing something

— Lock before entering critical section and
before accessing shared data

— Unlock when leaving, after accessing shared data
— Wait if locked
* Important idea: all synchronization involves waiting
* For example: fix the humus problem by putting a key on the refrigerator
— Lock it and take key if you are going to go buy humus
— Fixes too much: roommate angry if only wants OJ

— Of Course — We don’t know how to make a lock yet

7 Dec 2025 SE 317: Operating Systems
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Too Much Humus: Correctness Properties

* Need to be careful about correctness of concurrent programs, since non-
deterministic
— Always write down behavior first
— Impulse is to start coding first, then when it doesn’t work, pull hair out
— Instead, think first, then code

« What are the correctness properties for the “Too much humus” problem???
— Never more than one person buys
— Someone buys if needed

* Restrict ourselves to use only atomic load and store operations as building
blocks

7 Dec 2025 SE 317: Operating Systems
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Too Much Humus: Solution #1

« Use a note to avoid buying too much humus:
— Leave a note before buying (kind of “lock™)
— Remove note after buying (kind of “unlock™)
— Don'’t buy if there’s a note (wait)

« Suppose a computer tries this (remember, only memory read/write are atomic):
if (noHumus) { |
if (noNote) { (ﬁr—ﬁ 5
leave Note; 2
buy humus; :
remove note;

}
}

* Result?

— Still too much humus but only occasionally!

— Thread can get context switched after checking humus and note but before buying humus!
« Solution makes problem worse since fails intermittently

— Makes it really hard to debug...

— Must work despite what the dispatcher does!

7 Dec 2025 SE 317: Operating Systems 34



Too Much Humus: Solution #1%

» Clearly the Note is not quite blocking enough
— Let’s try to fix this by placing note first

* Another try at previous solution:

leave Note;

if (noHumus) A
if (noNote) {
leave Note;
buy humus;

}
}
remove note;

* What happens here?

— Well, with human, probably nothing bad
— With computer: no one ever buys humus

7 Dec 2025 SE 317: Operating Systems
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Too Much Humus Solution #2

« How about labeled notes?

— Now we can leave note before checking

* Algorithm looks like this:

Thread A Thread B

leave note A; leave note B;

if (noNote B) { if (noNote A) {
if (noHumus) { if (noHumus) {

buy Humus; buy Humus;

} }

} }

remove note A; remove note B;

7 Dec 2025 SE 317: Operating Systems
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Too Much Humus Solution #2

Possible for neither
thread to buy humus

Does this work? « Context switches at exactly
the wrong time can lead
each to think that the other

IS going to buy

Really insidious:

» Extremely unlikely that this would happen, but will at worst
possible time

* Probably something like this in UNIX

7 Dec 2025
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Too Much Humus Solution #2 Problem

* I’'m not getting humus, You're getting humus
« This kind of lockup is called “starvation!”

STARVE
THE BEAST

7 Dec 2025 SE 317: Operating Systems
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Too Much Humus Solution #3

* Here is a possible two-note solution:

Thread A

leave note A;
while (note B) { //X
do nothing;

if (noHumus) {
buy Humus;
}

remove note A;

Thread B

leave note B;
if (noNote A) { //Y
if (noHumus) A
buy Humus;
}
}

remove note B;

7 Dec 2025
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Too Much Humus Solution #3

* Does this work? Yes. Both can guarantee that:
— It is safe to buy, or
— Other will buy, ok to quit

o At X:

— if no note B, safe for A to buy,
— otherwise wait to find out what will happen

e AtY:

— if no note A, safe for B to buy
— Otherwise, A is either buying or waiting for B to quit

7 Dec 2025 SE 317: Operating Systems
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Solution #3 discussion

« Our solution protects a single “Critical-Section™ piece of code for each
thread:

if (noHumus) A
buy humus;

}
« Solution #3 works, but it's unsatisfactory

— Really complex — even for this simple an example
» Hard to convince yourself that this really works

— A’s code is different from B’s — what if you have many threads?
— Code would have to be slightly different for each thread

— While A is waiting, it is consuming CPU time
« This is "busy-waiting”

7 Dec 2025 SE 317: Operating Systems 41



Solution #3 discussion

There’s a better way:

» Have hardware provide better (higher-level)
primitives than atomic load and store

* Build even higher-level programming abstractions
on this new hardware support

7 Dec 2025
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Too Much Humus: Solution #4

« Let’'s make an implementation of a lock (more later).
- Lock.Acquire () —wait until lock is free, then grab
- Lock.Release () — Unlock, waking up anyone waiting

— Must be atomic operations — if two threads are waiting for the lock and both see it’s free, only
one succeeds in grabbing the lock

* Then, our humus problem is easy:

humuslock.Acquire();
if (noHumus)

buy humus;
humuslock.Release();

« Section of code between Acquire() and Release() is a “Critical Section”

* You can make this even simpler: suppose you are out of ice crear{] |Qst%ad of humus
“;
— Skip the test since you always need more ice cream.
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Where are we going with synchronization?

Programs |Shared Programs

Higher Locks, Semaphores, Monitors,

Level APl |Send/Receive

Hardware Load/Store, Disable Interrupts, Test &
Set, Compare & Swap

« We are going to implement various higher-level
synchronization primitives using atomic operations
— Everything is pretty painful if the only atomic primitives are load

and store

— Need to provide primitives which are useful at user-level

7 Dec 2025
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So Far

« Cooperating threads

« Concurrency challenge

* Motivation for Synchronization and Locks
« Atomic Read-Modify-Write Operations

« Higher Level Synchronization Atoms
— Semaphores
— Monitors

7 Dec 2025 SE 317: Operating Systems
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Atomic Read-Modify-Write instructions

* Problems with interrupts only based solution:
1. Can'’t give lock implementation to users

2. Doesn’'t work well on multiprocessor
« Disabling interrupts on all processors requires messages and would be very time consuming

» Alternative: Atomic Instruction Sequences

Instructions that read a
value from memory and
write a new value
atomically

Hardware is responsible for
Implementing this correctly

« On uniprocessors (not too hard)

* On multiprocessors (requires help
from cache coherence protocol)

Unlike disabling interrupts,
can be used on both
uniprocessors and
multiprocessors

7 Dec 2025
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Examples of Read-Modify-Write

test&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;
return result;

swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

7 Dec 2025 SE 317: Operating Systems
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Examples of Read-Modify-Write

compare&swap (&address, regl, reg2) { /* 68000 */
if (regl == M[address]) {
M[address] = reg2;
return success;
} else {
return failure;

7 Dec 2025 SE 317: Operating Systems

69



Examples of Read-Modify-Write

load-linked&store conditional(&address) {
/* R4000, alpha */
loop:
11 rl, M[address];
movi r2, 1; /* Can do arbitrary comp */
sc r2, M[address];
beqz r2, loop;

7 Dec 2025 SE 317: Operating Systems

70



Implementing Locks with test&set

« Another flawed, but simple solution:

int value = 0; // Free
Acquire() {
while (test&set(value)); // while busy

¥

Release() {
value = 0;

}
« Simple explanation:

— If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It returns 0 so while
exits.

— If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1, so while loop
continues

— When we set value = 0, someone else can get lock
« Busy-Waiting: thread consumes cycles while waiting
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Problem: Busy-Waiting for Lock

Positives [& Negatives D@

 Machine can receive interrupts
e User code can use the lock
 Works on a multiprocessor

* Very inefficient because the busy-
waiting thread consumes cycles
waiting

« Waiting thread may take cycles
away from thread holding lock (no
one wins!)

* Priority Inversion: If busy-waiting
thread has higher priority than
thread holding lock = no progress!

— Priority Inversion problem with original
Martian rover

7 Dec 2025
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Priority inversion

LOOK WHAT YOU
CAN DO WITH
BIG S0CKS!

@Lm L beiraal Presa Syndicaie

Calvin and Hobbes by Bill Watterson for October 14, 1986
https://lwww.gocomics.com/calvinandhobbes/1986/10/14

JUST PUT ONE OVER BACH | AN ELEPHANT! HA HA!
EAR, AND ONE QVER T WANT SOME SOCKs TO0!
YOUR NOSE..

IF I MISS THE BUS, TS
GOING TO BE UNPLEASANT

\k‘ﬁ_@‘%ﬂ‘\iﬂDHEﬁEf
Nam
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Priority Inversion

High priority process

‘ Waiting for
A
Locked i

Low priority process
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Priority Inversion

Wait Queue

&)

High priority process

Low priority process
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Problem: Busy-Waiting for Lock

For semaphores and monitors,
waiting thread may wait for an
arbitrary length of time!

* Even if busy-waiting OK for locks
definitely not ok for other primitives

« Homework/exam solutions should
not have busy-waiting!

7 Dec 2025
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Multiprocessor Spin Locks: test&test&set

* A better solution for multiprocessors:
int mylock = @; // Free
Acquire() {

do {

while(mylock); // Wait until might be free
} while(test&set(&mylock)); // exit if get lock

}

Release() {
mylock = 0;
}

« Simple explanation:
— Wait until lock might be free (only reading — stays in cache)
— Then, try to grab lock with test&set
— Repeat if fail to actually get lock

 |ssues with this solution:

— Busy-Waiting: thread still consumes cycles while waiting
— However, it does not impact other processors!

7 Dec 2025 SE 317: Operating Systems
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Better Locks using test&set

Can we build test&set locks without busy-waiting?
« Can't entirely, but can minimize!
 ldea: only busy-wait to atomically check lock value

int guard = 0; Release() {
int value = FREE; // Short busy-wait time
Acquire() { while (test&set(guard));
// Short busy-wait time if anyone on wait queue {
while (test&set(guard)); take thread off wait queue
if (value == BUSY) { Place on ready queue;
put thread on wait queue; } else {
go to sleep() & guard = 0; value = FREE;
} else { }
velue = 8usv; guard = o3
}

} * Note: sleep has to be sure to reset the guard variable
 Why can’t we do it just before or just after the sleep?
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So Far

« Cooperating threads

« Concurrency challenge

* Motivation for Synchronization and Locks
« Atomic Read-Modify-Write Operations

« Higher Level Synchronization Atoms
— Semaphores
— Monitors
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Higher-level Primitives than Locks

* Goal so far:
— What is the right abstraction for synchronizing threads that share memory?
— Want as high a level primitive as possible

« Good primitives and practices important!
— Since execution is not entirely sequential, really hard to find bugs, since they happen rarely

— UNIX is stable now, but up until mid-80s (10 years after started), systems running UNIX
would crash every week or so — concurrency bugs

« Synchronization is a way of coordinating multiple concurrent activities that are
using shared state
— We need paradigms to structure the sharing
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* Semaphores are a kind of generalized lock
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX

« Definition: A Semaphore has a non-negative integer value and supports the
following two operations:

- P(): an atomic operation that waits for semaphore to become positive, then decrements it
by 1
« Think of this as the wait() operation
- V() : an atomic operation that increments the semaphore by 1, waking up a waiting P, if
any
« Think of this as the signal() operation

— Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (o increment) in
Dutch

https://www.youtube.com/watch?v=LKQpy107yUY
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Semaphores Like Integers Except

* Semaphores are like integers, except
— No negative values
— Only operations allowed are P and V — can’t read or write value, except to set it initially

— Operations must be atomic
« Two P’s together can’t decrement value below zero

 Similarly, thread going to sleep in P won’t miss wakeup from V — even if they both happen at
same time

« Semaphore from railway analogy
— Here is a semaphore initialized to 2 for resource control:
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Railroad Analogy Step 1
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Railroad Analogy Step 2
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Railroad Analogy Step 3
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Railroad Analogy Step 4
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Railroad Analogy Step 7

Value=0
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Two Uses of Semaphores

Mutual Exclusion Scheduling Constraints Z
* Initial value = 1 * Initial value =0
. Also called “Binary Semaphore”. « What if you want a thread to wait

for something?

« Can be used for mutual exclusion: . Example: Implement ThreadJoin

semaphore.P(); (wait for a thread to terminate):
// Critical section // goes Initial value of semaphore
here =0

semaphore.V(); ThreadJoin {

semaphore.P();

}

ThreadFinish {
semaphore.V();

}
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Semaphores

* Semaphores are a kind of generalized lock
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX

|

« Definition: A Semaphore has a non-negative integer value and suppon‘s the
following two operations:

- P(): an atomic operation that waits for semaphore to become positive, then decrements it
by 1
« Think of this as the wait() operation

- V() : an atomic operation that increments the semaphore by 1, waking up a waiting P, if
any
« Think of this as the signal() operation

— Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (o increment) in
Dutch

https://www.youtube.com/watch?v=LKQpy107yUY
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Two Uses of Semaphores

Mutual Exclusion Scheduling Constraints Z
* Initial value = 1 * Initial value = 0
. Also called “Binary Semaphore”. « What if you want a thread to wait

for something?

« Can be used for mutual exclusion: . Example: Implement ThreadJoin

semaphore.P(); (wait for a thread to terminate):
// Critical section // goes Initial value of semaphore
here =0

semaphore.V(); ThreadJoin {

semaphore.P();

}

ThreadFinish {
semaphore.V();

}
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A Bounded Buffer

Producer

—> Buffer

Consumer
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Producer-consumer with a bounded buffer

Problem Definition

* Producer puts things into a shared
buffer

e Consumer takes them out

* Need synchronization to coordinate
producer/consumer

Don’t want producer and
consumer to have to work In
lockstep, so put a fixed-size buffer
between them

« Synchronize access to the buffer

* Producer needs to wait if buffer is full
« Consumer needs to wait if buffer is empty

Example: Drink machine

* Producer can put limited number of
bottles in machine

« Consumer can’t take bottles out if
machine is empty

Example: GCC
ecpp | ccl | cc2 | as | 1d
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Correctness constraints for solution

* Correctness Constraints: « Remember why we need

— Consumer must wait for producer mutual exclusion
to fill buffers, if all are empty — Computers are stupid
(scheduling constr.alnt) — Imagine if in real life: the delivery

— Producer must Walt for consumer person IS f||||ng the machine and
to empty buffers, if all are full somebody comes up and tries to
(scheduling constraint) stick their money into the

— Only one thread can manipulate machine

buffer queue at a time (mutual
exclusion)
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Correctness constraints for solution

* General rule of thumb:
Use a separate semaphore for each constraint

- Sema
- Sema
— Sema

D
D
D

nore fullBuffers; // consumer’s constraint
nore emptyBuffers;// producer’s constraint

nore mutex; // mutual exclusion
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Full Solution to Bounded Buffer

Semaphore fullBuffer = 0; // Initially, no pop

Semaphore emptyBuffers = numBuffers;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {

emptyBuffers.P(); // Wait until space
mutex.P(); // Wait until buffer free
Enqueue(item);
mutex.V();
fullBuffers.V(); // Tell consumers there is
// more pop

}

Consumer() {
fullBuffers.P(); // Check if there’s a pop
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptyBuffers.V(); // tell producer need more

return item;
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Discussion about Solution

 Why asymmetry?
— Producer does: emptyBuffer.P(), fullBuffer.V()
— Consumer does: fullBuffer.P(), emptyBuffer.V()

Is order of P’'s important?
— Yes! Can cause deadlock

Is order of V's important?
— No, except that it might affect scheduling efficiency

What if we have 2 producers or 2 consumers?
— Do we need to change anything?
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So Far

e Cooperating threads

« Concurrency challenge

* Motivation for Synchronization and Locks
« Atomic Read-Modify-Write Operations

« Higher Level Synchronization Atoms
— Semaphores
— Monitors
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Motivation for Monitors and Condition Variables

Semaphores are a huge
step up

* Try to do the bounded buffer with
only loads and stores

Problem:

« Semaphores are dual purpose:

* They are used for both mutex and
scheduling constraints

Example:

 That flipping P’s in bounded buffer
gives deadlock is not immediately
obvious.

 How do you prove correctness to
someone?

Cleaner idea:

 Use locks for mutual exclusion and
condition variables for scheduling
constraints
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Conclusion

« Cooperating threads

« Concurrency challenge

* Motivation for Synchronization and Locks
« Atomic Read-Modify-Write Operations

« Higher Level Synchronization Atoms
— Semaphores
— Monitors
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