
7 Dec 2025 SE 317: Operating Systems 1

Cooperating Threads, Synchronization

Mutual Exclusion, Semaphores

7 December 2025

Lecture 7

Slides adapted from John Kubiatowicz (UC Berkeley)

Lecturer: Dr. Michael J. May

Kinneret College

Concept Review

Thread
lifecycle

Thread join
Kernel

supported
threads

User
supported

threads

Scheduler
activation

yield()

switch()
Cooperating

threads

7 Dec 2025 SE 317: Operating Systems 2

Topics for Today

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors

7 Dec 2025 SE 317: Operating Systems 3

Concepts for today

7 Dec 2025 SE 317: Operating Systems 4

Programmer vs. Processor View

Programmer’s

View

Possible

Execution

#1

Possible

Execution

#2

Possible

Execution

#3

. . . .

. . . .

. . . .

x=x+1; x=x+1; x=x+1; x=x+1;

y=y+x; y=y+x; Thread suspended y=y+x;

z=x+5y; z=x+5y; Others run Thread suspended

. . Thread resumed Others run

. . y=y+x; Thread resumed

. . z=x+5y; z=x+5y;

7 Dec 2025 SE 317: Operating Systems 5

Possible Executions

7 Dec 2025 SE 317: Operating Systems 6

Thread 1

Thread 2

Thread 3

One Execution

Thread 1

Thread 2

Thread 3

Another Execution

Thread 1

Thread 2

Thread 3

A Third Execution
https://www.youtube.com/watch?v=YVrrw83U--I

Multiprocessing vs Multiprogramming

7 Dec 2025 SE 317: Operating Systems 7

A

B

C

B CA

A A B BB CC

M
u
lt
ip

ro
c
e
s
s
in

g

o
n
 m

a
n
y
-c

o
re

M
u

lt
ip

ro
g
ra

m
m

in
g

o
n

 s
in

g
le

-c
o
re

Truly at once

Pretend at once

Why use Pretend At Once?

7 Dec 2025 SE 317: Operating Systems 8

Most programs do nothing most of the time

Some tasks involve lots of waiting

Users want to have multiple things running “at once”

Brain smooths over small time discontinuities

Correctness for systems with concurrent threads

Dispatcher can schedule threads in any way →

programs must work under all circumstances

• Can you test this?

• How can you know if your program works?

Ideal: Independent Threads

• No state shared with other threads

• Deterministic  Input state determines results

• Reproducible  Can recreate starting conditions,

I/O

• Scheduling order doesn’t matter (if switch()

works!)

7 Dec 2025 SE 317: Operating Systems 9

Image credit: Steve Jurvetson (flickr)

Correctness for systems with concurrent threads

• Reality: Cooperating Threads

– Shared State between multiple threads

– Non-deterministic

– Non-reproducible

• Non-deterministic and Non-reproducible

means bugs can be intermittent

– “Heisenbugs”

7 Dec 2025 SE 317: Operating Systems 10

Image credit: Youtube

Why allow cooperating threads?

• Advantage 1: Share resources

– One computer, many users

– One bank balance, many ATMs

• What if ATMs were only updated at night?

– Embedded systems (robot control: coordinate arm & hand)

7 Dec 2025 SE 317: Operating Systems 11

Why allow cooperating threads?

• Advantage 2: Speedup

– Overlap I/O and computation

• Many different file systems do read-ahead

– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity

– More important than you might think

– Chop large problem up into simpler pieces

• To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld

• Makes system easier to extend

7 Dec 2025 SE 317: Operating Systems 12

Interactions Complicate Debugging

• No programs are truly independent

– Processes share file system, OS resources, network, etc.

– Example: buggy device driver causes thread A to crash “independent

thread” B

• You don’t realize how much you depend on reproducibility:

– Example: Evil C compiler

• Modifies files behind your back by inserting errors into C program unless you insert

debugging code

– Example: Debugging statements can overrun stack

7 Dec 2025 SE 317: Operating Systems 13

Non-determinism makes things impossible

Example: Memory layout of

kernel and user programs

• Depends on scheduling, which

depends on timer/other things

• Original UNIX had a bunch of

non-deterministic errors

Example: Something which does

interesting I/O

• User typing of letters used to

help generate secure keys

• Can’t predict →Can’t test →

Can never be certain

7 Dec 2025 SE 317: Operating Systems 14

7 Dec 2025 SE 317: Operating Systems 15

Im
a

g
e

 s
o

u
rc

e
:
X

K
C

D
 (

h
tt

p
:/

/i
m

g
s
.x

k
c
d

.c
o

m
/c

o
m

ic
s
/f
e
e

d
b
a
c
k
.p

n
g
)

Goal: Paradigms!

7 Dec 2025 SE 317: Operating Systems 16

Source: Dilbert (3 Nov 1991) by Scott Adams

So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors

7 Dec 2025 SE 317: Operating Systems 17

Example: ATM Bank Server

7 Dec 2025 SE 317: Operating Systems 18

• ATM server problem:
– Service a set of requests

– Don’t corrupt database

– Don’t hand out too much money

Basic Bank Server Code

BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 ProcessRequest(op, acctId, amount);
 }
}

 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}

 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
}

7 Dec 2025 SE 317: Operating Systems 19

What can go wrong?

• Requests proceeds to completion, blocking as required:

 Deposit(acctId, amount) {

 acct = GetAccount(actId); /* May use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
 }

• Unfortunately, shared state can get corrupted:

 Thread 1 Thread 2

 load r1, acct->balance
 load r1, acct->balance
 add r1, amount2
 store r1, acct->balance
 add r1, amount1
 store r1, acct->balance

7 Dec 2025 SE 317: Operating Systems 20

Problem is at the lowest level
• Most of the time, threads are working on separate data, so scheduling doesn’t

matter:
 Thread A Thread B

 x = 1; y = 2;

• However, What about (Initially, y=12):
 Thread A Thread B
 x = 1; y = 2;
 x = y+1; y = y*2;

– What are the possible values of x?

• Or, what are the possible values of x below?
 Thread A Thread B
 x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)

• Could even be 3 for serial processors:
– Thread A writes 0001, B writes 0010.
– Scheduling order ABABABBA yields 3!

7 Dec 2025 SE 317: Operating Systems 21

 ic Operations

• To understand a concurrent program, we need to know what the

underlying indivisible operations are!

• Atomic Operation: an operation that always runs to completion or

not at all

– It is indivisible: it cannot be stopped in the middle and state cannot be

modified by someone else in the middle

– Fundamental building block – if no atomic operations, then have no way for

threads to work together

7 Dec 2025 SE 317: Operating Systems 22

7 Dec 2025 SE 317: Operating Systems 23

“As always, should you or any of your IM force be caught

or killed, the Secretary will disavow any knowledge of

your actions.

“Good luck, Jim. This tape will self-destruct in five

seconds.”

(1966-1973)

 ic Operations

• On most machines, memory references and assignments (i.e.

loads and stores) of words are atomic

– Consequently – weird example that produces “3” on previous slide can’t

happen

• Many instructions are not atomic

– Double-precision floating point store often not atomic

– VAX and IBM 360 had an instruction to copy a whole array

7 Dec 2025 SE 317: Operating Systems 24

Threaded programs
must work for all
interleavings of

thread instruction
sequences

Cooperating threads
inherently non-

deterministic and
non-reproducible

Really hard to
debug unless

carefully designed!

Correctness Requirements

7 Dec 2025 SE 317: Operating Systems 25

Im
a

g
e

 s
o

u
rc

e
:

h
tt

p
:/

/k
n

o
w

y
o

u
rm

e
m

e
.c

o
m

/p
h

o
to

s
/9

0
9

9
9

1
-f

u
tu

ra
m

a

Example: Therac-25
• Machine for radiation therapy

– Software control of electron accelerator and electron
beam/
X-Ray production

– Software control of dosage

• Software errors caused the death of several
patients
– A series of race conditions on shared variables and poor

software design

• “They determined that data entry speed during
editing was the key factor in producing the error
condition: If the prescription data was edited at a
fast pace, the overdose occurred.”

7 Dec 2025 SE 317: Operating Systems 26

Another Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter

– The other tries to decrement the counter

 Thread A Thread B

 i = 0; i = 0;
 while (i < 10) while (i > -10)
 i = i + 1; i = i – 1;
 printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but incrementing and
decrementing are not atomic

• Who wins? Could be either

• Is it guaranteed that someone wins? Why or why not?

• What if both threads have their own CPU running at same speed? Is it
guaranteed that it goes on forever?

7 Dec 2025 SE 317: Operating Systems 27

Hand Simulation Multiprocessor Example

• Inner loop looks like this:
 Thread A Thread B
 r1=0 load r1, M[i]
 r1=0 load r1, M[i]
 r1=1 add r1, r1, 1
 r1=-1 sub r1, r1, 1
 M[i]=1 store r1, M[i]
 M[i]=-1 store r1, M[i]

• Hand Simulation:
– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes! Unlikely, but if you are depending on it not happening, it will and your system will

break…

7 Dec 2025 SE 317: Operating Systems 28

So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors

7 Dec 2025 SE 317: Operating Systems 29

Motivation: “Too much humus”

• Great thing about OS’s – analogy between problems in OS and problems in

real life

– Help you understand real life problems better

– But, computers are much stupider than people

• Example: People need to coordinate:

7 Dec 2025 SE 317: Operating Systems 30

Time Alice Bob

3:00 Look in Fridge. Out of humus.

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of humus.

3:15 Buy humus Leave for store

3:20 Arrive at home, put humus away Arrive at store

3:25 Buy humus

3:30 Arrive at home, put humus away

Definitions

7 Dec 2025 SE 317: Operating Systems 31

Synchronization: using atomic
operations to ensure cooperation
between threads

• For now, only loads and stores are
atomic

• We are going to show that its hard to
build anything useful with only reads
and writes

Mutual Exclusion: ensuring that
only one thread does a
particular thing at a time

• One thread excludes the other while
doing its task

Critical Section: piece of code that only one thread can execute at once.
Only one thread at a time will get into this section of code.

• Critical section is the result of mutual exclusion

• Critical section and mutual exclusion are two ways of describing the same thing.

More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked

• Important idea: all synchronization involves waiting

• For example: fix the humus problem by putting a key on the refrigerator

– Lock it and take key if you are going to go buy humus

– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

7 Dec 2025 SE 317: Operating Systems 32

Too Much Humus: Correctness Properties

• Need to be careful about correctness of concurrent programs, since non-

deterministic

– Always write down behavior first

– Impulse is to start coding first, then when it doesn’t work, pull hair out

– Instead, think first, then code

• What are the correctness properties for the “Too much humus” problem???

– Never more than one person buys

– Someone buys if needed

• Restrict ourselves to use only atomic load and store operations as building

blocks

7 Dec 2025 SE 317: Operating Systems 33

Too Much Humus: Solution #1
• Use a note to avoid buying too much humus:

– Leave a note before buying (kind of “lock”)

– Remove note after buying (kind of “unlock”)

– Don’t buy if there’s a note (wait)

• Suppose a computer tries this (remember, only memory read/write are atomic):
 if (noHumus) {

 if (noNote) {
 leave Note;
 buy humus;
 remove note;
 }
 }

• Result?
– Still too much humus but only occasionally!

– Thread can get context switched after checking humus and note but before buying humus!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…

– Must work despite what the dispatcher does!

7 Dec 2025 SE 317: Operating Systems 34

Too Much Humus: Solution #1½

• Clearly the Note is not quite blocking enough
– Let’s try to fix this by placing note first

• Another try at previous solution:

 leave Note;
 if (noHumus) {
 if (noNote) {
 leave Note;
 buy humus;
 }
 }

 remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys humus

7 Dec 2025 SE 317: Operating Systems 35

Too Much Humus Solution #2

• How about labeled notes?

– Now we can leave note before checking

• Algorithm looks like this:

 Thread A Thread B

 leave note A; leave note B;

 if (noNote B) { if (noNote A) {

 if (noHumus) { if (noHumus) {

 buy Humus; buy Humus;

 } }

 } }

 remove note A; remove note B;

7 Dec 2025 SE 317: Operating Systems 36

Too Much Humus Solution #2

Does this work?

Possible for neither
thread to buy humus

• Context switches at exactly
the wrong time can lead
each to think that the other
is going to buy

Really insidious:

• Extremely unlikely that this would happen, but will at worst
possible time

• Probably something like this in UNIX

7 Dec 2025 SE 317: Operating Systems 37

Too Much Humus Solution #2 Problem

• I’m not getting humus, You’re getting humus

• This kind of lockup is called “starvation!”

7 Dec 2025 SE 317: Operating Systems 38

Too Much Humus Solution #3
• Here is a possible two-note solution:

 Thread A Thread B

 leave note A; leave note B;
while (note B) { //X if (noNote A) { //Y
 do nothing; if (noHumus) {
} buy Humus;
if (noHumus) { }
 buy Humus; }
} remove note B;
remove note A;

7 Dec 2025 SE 317: Operating Systems 39

Too Much Humus Solution #3

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or

– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,

– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy

– Otherwise, A is either buying or waiting for B to quit

7 Dec 2025 SE 317: Operating Systems 40

Solution #3 discussion

• Our solution protects a single “Critical-Section” piece of code for each

thread:

 if (noHumus) {
 buy humus;
 }

• Solution #3 works, but it’s unsatisfactory

– Really complex – even for this simple an example

• Hard to convince yourself that this really works

– A’s code is different from B’s – what if you have many threads?

– Code would have to be slightly different for each thread

– While A is waiting, it is consuming CPU time

• This is “busy-waiting”

7 Dec 2025 SE 317: Operating Systems 41

Solution #3 discussion

There’s a better way:

• Have hardware provide better (higher-level)

primitives than atomic load and store

• Build even higher-level programming abstractions

on this new hardware support

7 Dec 2025 SE 317: Operating Systems 42

Too Much Humus: Solution #4
• Let’s make an implementation of a lock (more later).

– Lock.Acquire() – wait until lock is free, then grab

– Lock.Release() – Unlock, waking up anyone waiting

– Must be atomic operations – if two threads are waiting for the lock and both see it’s free, only

one succeeds in grabbing the lock

• Then, our humus problem is easy:

 humuslock.Acquire();

 if (noHumus)

 buy humus;

 humuslock.Release();

• Section of code between Acquire() and Release() is a “Critical Section”

• You can make this even simpler: suppose you are out of ice cream instead of humus

– Skip the test since you always need more ice cream.

7 Dec 2025 SE 317: Operating Systems 43

Where are we going with synchronization?

7 Dec 2025 SE 317: Operating Systems 44

Programs Shared Programs

Higher

Level API

Locks, Semaphores, Monitors,

Send/Receive

Hardware
Load/Store, Disable Interrupts, Test &

Set, Compare & Swap

• We are going to implement various higher-level

synchronization primitives using atomic operations

– Everything is pretty painful if the only atomic primitives are load

and store

– Need to provide primitives which are useful at user-level

So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors

7 Dec 2025 SE 317: Operating Systems 66

Atomic Read-Modify-Write instructions

• Problems with interrupts only based solution:

1. Can’t give lock implementation to users

2. Doesn’t work well on multiprocessor

• Disabling interrupts on all processors requires messages and would be very time consuming

• Alternative: Atomic Instruction Sequences

7 Dec 2025 SE 317: Operating Systems 67

Instructions that read a
value from memory and

write a new value
atomically

Hardware is responsible for
implementing this correctly

• On uniprocessors (not too hard)

• On multiprocessors (requires help
from cache coherence protocol)

Unlike disabling interrupts,
can be used on both
uniprocessors and

multiprocessors

Examples of Read-Modify-Write

test&set (&address) { /* most architectures */

 result = M[address];

 M[address] = 1;

 return result;

}

swap (&address, register) { /* x86 */

 temp = M[address];

 M[address] = register;

 register = temp;

}

7 Dec 2025 SE 317: Operating Systems 68

Examples of Read-Modify-Write

compare&swap (&address, reg1, reg2) { /* 68000 */

 if (reg1 == M[address]) {

 M[address] = reg2;

 return success;

 } else {

 return failure;

 }

}

7 Dec 2025 SE 317: Operating Systems 69

Examples of Read-Modify-Write

load-linked&store conditional(&address) {

 /* R4000, alpha */

 loop:

 ll r1, M[address];

 movi r2, 1; /* Can do arbitrary comp */

 sc r2, M[address];

 beqz r2, loop;

}

7 Dec 2025 SE 317: Operating Systems 70

Implementing Locks with test&set

• Another flawed, but simple solution:

 int value = 0; // Free

 Acquire() {
 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It returns 0 so while

exits.

– If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1, so while loop
continues

– When we set value = 0, someone else can get lock

• Busy-Waiting: thread consumes cycles while waiting

7 Dec 2025 SE 317: Operating Systems 71

Positives Negatives

• Very inefficient because the busy-

waiting thread consumes cycles

waiting

• Waiting thread may take cycles

away from thread holding lock (no

one wins!)

• Priority Inversion: If busy-waiting

thread has higher priority than

thread holding lock  no progress!

– Priority Inversion problem with original

Martian rover

7 Dec 2025 SE 317: Operating Systems 72

Problem: Busy-Waiting for Lock

• Machine can receive interrupts

• User code can use the lock

• Works on a multiprocessor

Priority inversion

7 Dec 2025 SE 317: Operating Systems 73

Calvin and Hobbes by Bill Watterson for October 14, 1986

https://www.gocomics.com/calvinandhobbes/1986/10/14

Priority Inversion

7 Dec 2025 SE 317: Operating Systems 74

High priority process

Low priority process

Locked

Waiting for

Priority Inversion

7 Dec 2025 SE 317: Operating Systems 75

High priority process

Low priority process

Wait Queue

Problem: Busy-Waiting for Lock

7 Dec 2025 SE 317: Operating Systems 76

For semaphores and monitors,
waiting thread may wait for an
arbitrary length of time!

• Even if busy-waiting OK for locks,
definitely not ok for other primitives

• Homework/exam solutions should
not have busy-waiting!

Multiprocessor Spin Locks: test&test&set

• A better solution for multiprocessors:

 int mylock = 0; // Free
 Acquire() {
 do {
 while(mylock); // Wait until might be free

 } while(test&set(&mylock)); // exit if get lock
 }

 Release() {
 mylock = 0;
 }

• Simple explanation:
– Wait until lock might be free (only reading – stays in cache)

– Then, try to grab lock with test&set

– Repeat if fail to actually get lock

• Issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

– However, it does not impact other processors!

7 Dec 2025 SE 317: Operating Systems 77

Can we build test&set locks without busy-waiting?

• Can’t entirely, but can minimize!

• Idea: only busy-wait to atomically check lock value

int guard = 0;
int value = FREE;
Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }
}

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
guard = 0;

7 Dec 2025 SE 317: Operating Systems 78

Better Locks using test&set

• Note: sleep has to be sure to reset the guard variable
• Why can’t we do it just before or just after the sleep?

So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors

7 Dec 2025 SE 317: Operating Systems 79

Higher-level Primitives than Locks

• Goal so far:

– What is the right abstraction for synchronizing threads that share memory?

– Want as high a level primitive as possible

• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find bugs, since they happen rarely

– UNIX is stable now, but up until mid-80s (10 years after started), systems running UNIX

would crash every week or so – concurrency bugs

• Synchronization is a way of coordinating multiple concurrent activities that are

using shared state

– We need paradigms to structure the sharing

7 Dec 2025 SE 317: Operating Systems 80

Semaphores

• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

• Definition: A Semaphore has a non-negative integer value and supports the

following two operations:

– P(): an atomic operation that waits for semaphore to become positive, then decrements it

by 1

• Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore by 1, waking up a waiting P, if

any

• Think of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in

Dutch

7 Dec 2025 SE 317: Operating Systems 81

B
y
 H

a
m

ilto
n

 R
ic

h
a

rd
s
 - m

a
n

u
s
c
rip

ts
 o

f E
d

s
g

e
r W

. D
ijk

s
tra

, U
n
iv

e
rs

ity
 T

e
x
a

s
 a

t A
u

s
tin

, C
C

 B
Y

-S
A

 3
.0

, h
ttp

s
://c

o
m

m
o

n
s
.w

ik
im

e
d

ia
.o

rg
/w

/in
d

e
x
.p

h
p

?
c
u

rid
=

4
2

0
4

1
5

7 https://www.youtube.com/watch?v=LKQpy107yUY

Semaphores Like Integers Except

• Semaphores are like integers, except

– No negative values

– Only operations allowed are P and V – can’t read or write value, except to set it initially

– Operations must be atomic

• Two P’s together can’t decrement value below zero

• Similarly, thread going to sleep in P won’t miss wakeup from V – even if they both happen at

same time

• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

7 Dec 2025 SE 317: Operating Systems 82

Railroad Analogy Step 1

7 Dec 2025 SE 317: Operating Systems 83

Value=2

Railroad Analogy Step 2

7 Dec 2025 SE 317: Operating Systems 84

Value=1

Railroad Analogy Step 3

7 Dec 2025 SE 317: Operating Systems 85

Value=1

Railroad Analogy Step 4

7 Dec 2025 SE 317: Operating Systems 86

Value=0

Railroad Analogy Step 5

7 Dec 2025 SE 317: Operating Systems 87

Value=0

Railroad Analogy Step 6

7 Dec 2025 SE 317: Operating Systems 88

Value=0

Railroad Analogy Step 7

7 Dec 2025 SE 317: Operating Systems 89

Value=1

Railroad Analogy Step 7

7 Dec 2025 SE 317: Operating Systems 90

Value=0

Mutual Exclusion

• Initial value = 1

• Also called “Binary Semaphore”.

• Can be used for mutual exclusion:

 semaphore.P();
// Critical section // goes
here
semaphore.V();

Scheduling Constraints

• Initial value = 0

• What if you want a thread to wait
for something?

• Example: Implement ThreadJoin
(wait for a thread to terminate):

 Initial value of semaphore
= 0

 ThreadJoin {
 semaphore.P();
}

 ThreadFinish {
 semaphore.V();
}

7 Dec 2025 SE 317: Operating Systems 91

Two Uses of Semaphores

Semaphores

• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

• Definition: A Semaphore has a non-negative integer value and supports the

following two operations:

– P(): an atomic operation that waits for semaphore to become positive, then decrements it

by 1

• Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore by 1, waking up a waiting P, if

any

• Think of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in

Dutch

7 Dec 2025 SE 317: Operating Systems 92

B
y
 H

a
m

ilto
n

 R
ic

h
a

rd
s
 - m

a
n

u
s
c
rip

ts
 o

f E
d

s
g

e
r W

. D
ijk

s
tra

, U
n
iv

e
rs

ity
 T

e
x
a

s
 a

t A
u

s
tin

, C
C

 B
Y

-S
A

 3
.0

, h
ttp

s
://c

o
m

m
o

n
s
.w

ik
im

e
d

ia
.o

rg
/w

/in
d

e
x
.p

h
p

?
c
u

rid
=

4
2

0
4

1
5

7

https://www.youtube.com/watch?v=LKQpy107yUY

Mutual Exclusion

• Initial value = 1

• Also called “Binary Semaphore”.

• Can be used for mutual exclusion:

 semaphore.P();
// Critical section // goes
here
semaphore.V();

Scheduling Constraints

• Initial value = 0

• What if you want a thread to wait
for something?

• Example: Implement ThreadJoin
(wait for a thread to terminate):

 Initial value of semaphore
= 0

 ThreadJoin {
 semaphore.P();
}

 ThreadFinish {
 semaphore.V();
}

7 Dec 2025 SE 317: Operating Systems 93

Two Uses of Semaphores

A Bounded Buffer

7 Dec 2025 SE 317: Operating Systems 94

Producer Buffer Consumer

Producer-consumer with a bounded buffer

7 Dec 2025 SE 317: Operating Systems 95

Problem Definition

• Producer puts things into a shared
buffer

• Consumer takes them out

• Need synchronization to coordinate
producer/consumer

Don’t want producer and
consumer to have to work in
lockstep, so put a fixed-size buffer
between them

• Synchronize access to the buffer

• Producer needs to wait if buffer is full

• Consumer needs to wait if buffer is empty

Example: Drink machine

• Producer can put limited number of
bottles in machine

• Consumer can’t take bottles out if
machine is empty

Example:: GCC

• cpp | cc1 | cc2 | as | ld

Correctness constraints for solution

• Correctness Constraints:

– Consumer must wait for producer

to fill buffers, if all are empty

(scheduling constraint)

– Producer must wait for consumer

to empty buffers, if all are full

(scheduling constraint)

– Only one thread can manipulate

buffer queue at a time (mutual

exclusion)

• Remember why we need

mutual exclusion

– Computers are stupid

– Imagine if in real life: the delivery

person is filling the machine and

somebody comes up and tries to

stick their money into the

machine

7 Dec 2025 SE 317: Operating Systems 96

7 Dec 2025 SE 317: Operating Systems 97

Correctness constraints for solution

• General rule of thumb:

Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint

– Semaphore emptyBuffers;// producer’s constraint

– Semaphore mutex; // mutual exclusion

7 Dec 2025 SE 317: Operating Systems 98

Full Solution to Bounded Buffer

7 Dec 2025 SE 317: Operating Systems 99

Semaphore fullBuffer = 0; // Initially, no pop

 Semaphore emptyBuffers = numBuffers;
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptyBuffers.P(); // Wait until space
 mutex.P(); // Wait until buffer free
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers there is
 // more pop
}

 Consumer() {
 fullBuffers.P(); // Check if there’s a pop
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptyBuffers.V(); // tell producer need more
 return item;
}

Discussion about Solution

• Why asymmetry?

– Producer does: emptyBuffer.P(), fullBuffer.V()

– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?

– Yes! Can cause deadlock

• Is order of V’s important?

– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?

– Do we need to change anything?

7 Dec 2025 SE 317: Operating Systems 100

So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors

7 Dec 2025 SE 317: Operating Systems 101

Motivation for Monitors and Condition Variables

Semaphores are a huge
step up

• Try to do the bounded buffer with
only loads and stores

Problem:

• Semaphores are dual purpose:

• They are used for both mutex and
scheduling constraints

Example:

• That flipping P’s in bounded buffer
gives deadlock is not immediately
obvious.

• How do you prove correctness to
someone?

Cleaner idea:

• Use locks for mutual exclusion and
condition variables for scheduling
constraints

7 Dec 2025 SE 317: Operating Systems 102

Conclusion

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors

7 Dec 2025 SE 317: Operating Systems 103

	Default Section
	Slide 1: Cooperating Threads, Synchronization Mutual Exclusion, Semaphores 7 December 2025 Lecture 7
	Slide 2: Concept Review
	Slide 3: Topics for Today
	Slide 4: Concepts for today
	Slide 5: Programmer vs. Processor View
	Slide 6: Possible Executions
	Slide 7: Multiprocessing vs Multiprogramming
	Slide 8: Why use Pretend At Once?
	Slide 9: Correctness for systems with concurrent threads
	Slide 10: Correctness for systems with concurrent threads
	Slide 11: Why allow cooperating threads?
	Slide 12: Why allow cooperating threads?
	Slide 13: Interactions Complicate Debugging
	Slide 14: Non-determinism makes things impossible
	Slide 15
	Slide 16: Goal: Paradigms!
	Slide 17: So Far

	Concurrency Challenge
	Slide 18: Example: ATM Bank Server
	Slide 19: Basic Bank Server Code
	Slide 20: What can go wrong?
	Slide 21: Problem is at the lowest level
	Slide 22: ic Operations
	Slide 23
	Slide 24: ic Operations
	Slide 25: Correctness Requirements
	Slide 26: Example: Therac-25
	Slide 27: Another Concurrent Program Example
	Slide 28: Hand Simulation Multiprocessor Example

	Motivation for synchronization and locks
	Slide 29: So Far
	Slide 30: Motivation: “Too much humus”
	Slide 31: Definitions
	Slide 32: More Definitions
	Slide 33: Too Much Humus: Correctness Properties
	Slide 34: Too Much Humus: Solution #1
	Slide 35: Too Much Humus: Solution #1½
	Slide 36: Too Much Humus Solution #2
	Slide 37: Too Much Humus Solution #2
	Slide 38: Too Much Humus Solution #2 Problem
	Slide 39: Too Much Humus Solution #3
	Slide 40: Too Much Humus Solution #3
	Slide 41: Solution #3 discussion
	Slide 42: Solution #3 discussion
	Slide 43: Too Much Humus: Solution #4
	Slide 44: Where are we going with synchronization?

	Atomic Read-Modify-Write Operations
	Slide 66: So Far
	Slide 67: Atomic Read-Modify-Write instructions
	Slide 68: Examples of Read-Modify-Write
	Slide 69: Examples of Read-Modify-Write
	Slide 70: Examples of Read-Modify-Write
	Slide 71: Implementing Locks with test&set
	Slide 72: Problem: Busy-Waiting for Lock
	Slide 73: Priority inversion
	Slide 74: Priority Inversion
	Slide 75: Priority Inversion
	Slide 76: Problem: Busy-Waiting for Lock
	Slide 77: Multiprocessor Spin Locks: test&test&set
	Slide 78: Better Locks using test&set

	Semaphores
	Slide 79: So Far
	Slide 80: Higher-level Primitives than Locks
	Slide 81: Semaphores
	Slide 82: Semaphores Like Integers Except
	Slide 83: Railroad Analogy Step 1
	Slide 84: Railroad Analogy Step 2
	Slide 85: Railroad Analogy Step 3
	Slide 86: Railroad Analogy Step 4
	Slide 87: Railroad Analogy Step 5
	Slide 88: Railroad Analogy Step 6
	Slide 89: Railroad Analogy Step 7
	Slide 90: Railroad Analogy Step 7
	Slide 91: Two Uses of Semaphores
	Slide 92: Semaphores
	Slide 93: Two Uses of Semaphores
	Slide 94: A Bounded Buffer
	Slide 95: Producer-consumer with a bounded buffer
	Slide 96: Correctness constraints for solution
	Slide 97
	Slide 98: Correctness constraints for solution
	Slide 99: Full Solution to Bounded Buffer
	Slide 100: Discussion about Solution

	Monitors
	Slide 101: So Far
	Slide 102: Motivation for Monitors and Condition Variables
	Slide 103: Conclusion

