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Topics for Today

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors
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Concepts for today
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Programmer vs. Processor View

Programmer’s 

View

Possible 

Execution

#1

Possible 

Execution

#2

Possible 

Execution

#3

. . . .

. . . .

. . . .

x=x+1; x=x+1; x=x+1; x=x+1;

y=y+x; y=y+x; Thread suspended y=y+x;

z=x+5y; z=x+5y; Others run Thread suspended

. . Thread resumed Others run

. . y=y+x; Thread resumed

. . z=x+5y; z=x+5y;
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Possible Executions

7 Dec 2025 SE 317: Operating Systems 6

Thread 1

Thread 2

Thread 3

One Execution

Thread 1

Thread 2

Thread 3

Another Execution

Thread 1

Thread 2

Thread 3

A Third Execution
https://www.youtube.com/watch?v=YVrrw83U--I



Multiprocessing vs Multiprogramming
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Why use Pretend At Once?
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Most programs do nothing most of the time

Some tasks involve lots of waiting

Users want to have multiple things running “at once”

Brain smooths over small time discontinuities



Correctness for systems with concurrent threads

Dispatcher can schedule threads in any way → 

programs must work under all circumstances

• Can you test this?

• How can you know if your program works?

Ideal: Independent Threads

• No state shared with other threads

• Deterministic  Input state determines results

• Reproducible  Can recreate starting conditions, 

I/O

• Scheduling order doesn’t matter (if switch() 

works!)
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Correctness for systems with concurrent threads

• Reality: Cooperating Threads

– Shared State between multiple threads

– Non-deterministic

– Non-reproducible

• Non-deterministic and Non-reproducible

means bugs can be intermittent

– “Heisenbugs”
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Why allow cooperating threads?

• Advantage 1: Share resources

– One computer, many users

– One bank balance, many ATMs

• What if ATMs were only updated at night?

– Embedded systems (robot control: coordinate arm & hand)
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Why allow cooperating threads?

• Advantage 2: Speedup

– Overlap I/O and computation

• Many different file systems do read-ahead

– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity 

– More important than you might think

– Chop large problem up into simpler pieces

• To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld

• Makes system easier to extend
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Interactions Complicate Debugging

• No programs are truly independent

– Processes share file system, OS resources, network, etc.

– Example: buggy device driver causes thread A to crash “independent 

thread” B

• You don’t realize how much you depend on reproducibility:

– Example: Evil C compiler

• Modifies files behind your back by inserting errors into C program unless you insert 

debugging code

– Example: Debugging statements can overrun stack
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Non-determinism makes things impossible

Example: Memory layout of 

kernel and user programs

• Depends on scheduling, which 

depends on timer/other things

• Original UNIX had a bunch of 

non-deterministic errors

Example: Something which does 

interesting I/O

• User typing of letters used to 

help generate secure keys

• Can’t predict →Can’t test → 

Can never be certain
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Goal: Paradigms!
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Source: Dilbert (3 Nov 1991) by Scott Adams



So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors
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Example: ATM Bank Server
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• ATM server problem:
– Service a set of requests

– Don’t corrupt database

– Don’t hand out too much money



Basic Bank Server Code

BankServer() {
   while (TRUE) {
      ReceiveRequest(&op, &acctId, &amount);
      ProcessRequest(op, acctId, amount);
   }
}

 ProcessRequest(op, acctId, amount) {
   if (op == deposit) Deposit(acctId, amount);
   else if …
}

 Deposit(acctId, amount) {
   acct = GetAccount(acctId); /* may use disk I/O */
   acct->balance += amount;
   StoreAccount(acct); /* Involves disk I/O */
}
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What can go wrong?

• Requests proceeds to completion, blocking as required:

  Deposit(acctId, amount) {

   acct = GetAccount(actId); /* May use disk I/O */
   acct->balance += amount;
   StoreAccount(acct);  /* Involves disk I/O */
 }

• Unfortunately, shared state can get corrupted:

  Thread 1  Thread 2

 load r1, acct->balance
     load r1, acct->balance
     add r1, amount2
     store r1, acct->balance
 add r1, amount1
 store r1, acct->balance
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Problem is at the lowest level
• Most of the time, threads are working on separate data, so scheduling doesn’t 

matter:
  Thread A Thread B

  x = 1; y = 2; 

• However, What about (Initially, y=12):
  Thread A Thread B
  x = 1; y = 2;
  x = y+1; y = y*2;

– What are the possible values of x? 

• Or, what are the possible values of x below?
  Thread A Thread B
  x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)

• Could even be 3 for serial processors:
– Thread A writes 0001, B writes 0010.  
– Scheduling order ABABABBA yields 3!
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   ic Operations

• To understand a concurrent program, we need to know what the 

underlying indivisible operations are!

• Atomic Operation: an operation that always runs to completion or 

not at all

– It is indivisible: it cannot be stopped in the middle and state cannot be 

modified by someone else in the middle

– Fundamental building block – if no atomic operations, then have no way for 

threads to work together
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“As always, should you or any of your IM force be caught 

or killed, the Secretary will disavow any knowledge of 

your actions. 

“Good luck, Jim. This tape will self-destruct in five 

seconds.”

(1966-1973)



   ic Operations

• On most machines, memory references and assignments (i.e. 

loads and stores) of words are atomic

– Consequently – weird example that produces “3” on previous slide can’t 

happen

• Many instructions are not atomic

– Double-precision floating point store often not atomic

– VAX and IBM 360 had an instruction to copy a whole array
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Threaded programs 
must work for all 
interleavings of 

thread instruction 
sequences

Cooperating threads 
inherently non-

deterministic and 
non-reproducible

Really hard to 
debug unless 

carefully designed!

Correctness Requirements
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Example: Therac-25
• Machine for radiation therapy

– Software control of electron accelerator and electron 
beam/
X-Ray production

– Software control of dosage

• Software errors caused the death of several 
patients
– A series of race conditions on shared variables and poor 

software design

• “They determined that data entry speed during 
editing was the key factor in producing the error 
condition: If the prescription data was edited at a 
fast pace, the overdose occurred.”
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Another Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter

– The other tries to decrement the counter

   Thread A  Thread B

  i = 0;  i = 0;
 while (i < 10) while (i > -10)
    i = i + 1;    i = i – 1;
 printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but incrementing and 
decrementing are not atomic 

• Who wins? Could be either

• Is it guaranteed that someone wins? Why or why not?

• What if both threads have their own CPU running at same speed?  Is it 
guaranteed that it goes on forever?
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Hand Simulation Multiprocessor Example

• Inner loop looks like this:
    Thread A   Thread B
  r1=0 load r1, M[i] 
     r1=0 load r1, M[i]
  r1=1 add r1, r1, 1
     r1=-1 sub r1, r1, 1
  M[i]=1 store r1, M[i]
     M[i]=-1 store r1, M[i]

• Hand Simulation:
– And we’re off.  A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes!  Unlikely, but if you are depending on it not happening, it will and your system will 

break…
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So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors
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Motivation: “Too much humus”

• Great thing about OS’s – analogy between problems in OS and problems in 

real life

– Help you understand real life problems better

– But, computers are much stupider than people

• Example: People need to coordinate:
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Time Alice Bob

3:00 Look in Fridge. Out of humus.

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of humus.

3:15 Buy humus Leave for store

3:20 Arrive at home, put humus away Arrive at store

3:25 Buy humus

3:30 Arrive at home, put humus away



Definitions
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Synchronization: using atomic 
operations to ensure cooperation 
between threads

• For now, only loads and stores are 
atomic

• We are going to show that its hard to 
build anything useful with only reads 
and writes

Mutual Exclusion: ensuring that 
only one thread does a 
particular thing at a time

• One thread excludes the other while 
doing its task

Critical Section: piece of code that only one thread can execute at once. 
Only one thread at a time will get into this section of code.

• Critical section is the result of mutual exclusion

• Critical section and mutual exclusion are two ways of describing the same thing.



More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and 
before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked

• Important idea: all synchronization involves waiting

• For example: fix the humus problem by putting a key on the refrigerator

– Lock it and take key if you are going to go buy humus 

– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet
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Too Much Humus: Correctness Properties

• Need to be careful about correctness of concurrent programs, since non-

deterministic

– Always write down behavior first

– Impulse is to start coding first, then when it doesn’t work, pull hair out

– Instead, think first, then code

• What are the correctness properties for the “Too much humus” problem???

– Never more than one person buys

– Someone buys if needed

• Restrict ourselves to use only atomic load and store operations as building 

blocks

7 Dec 2025 SE 317: Operating Systems 33



Too Much Humus: Solution #1
• Use a note to avoid buying too much humus:

– Leave a note before buying (kind of “lock”)

– Remove note after buying (kind of “unlock”)

– Don’t buy if there’s a note (wait)

• Suppose a computer tries this (remember, only memory read/write are atomic):
   if (noHumus) {

     if (noNote) {
        leave Note;
        buy humus;
        remove note;
     }
  }

• Result?  
– Still too much humus but only occasionally!

– Thread can get context switched after checking humus and note but before buying humus!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…

– Must work despite what the dispatcher does!
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Too Much Humus: Solution #1½ 

• Clearly the Note is not quite blocking enough
– Let’s try to fix this by placing note first

• Another try at previous solution:

   leave Note;
   if (noHumus) {
     if (noNote) {
        leave Note;
        buy humus;
     }
  }

   remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys humus
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Too Much Humus Solution #2

• How about labeled notes?  

– Now we can leave note before checking

• Algorithm looks like this:

   Thread A  Thread B

  leave note A; leave note B;

 if (noNote B) { if (noNote A) {

    if (noHumus) {    if (noHumus) {

       buy Humus;       buy Humus;

    }     }

 }  }

 remove note A; remove note B;
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Too Much Humus Solution #2

Does this work?

Possible for neither 
thread to buy humus

• Context switches at exactly 
the wrong time can lead 
each to think that the other 
is going to buy

Really insidious: 

• Extremely unlikely that this would happen, but will at worst 
possible time

• Probably something like this in UNIX
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Too Much Humus Solution #2 Problem

• I’m not getting humus, You’re getting humus

• This kind of lockup is called “starvation!”
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Too Much Humus Solution #3
• Here is a possible two-note solution:

 Thread A    Thread B

 leave note A;   leave note B;
while (note B) { //X   if (noNote A) { //Y
   do nothing;      if (noHumus) {
}                buy Humus;
if (noHumus) {      }
   buy Humus;   }
}     remove note B;
remove note A;
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Too Much Humus Solution #3

• Does this work? Yes. Both can guarantee that: 
– It is safe to buy, or

– Other will buy, ok to quit

• At X: 
– if no note B, safe for A to buy, 

– otherwise wait to find out what will happen

• At Y: 
– if no note A, safe for B to buy

– Otherwise, A is either buying or waiting for B to quit
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Solution #3 discussion

• Our solution protects a single “Critical-Section” piece of code for each 

thread:

   if (noHumus) { 
       buy humus; 
  }  

• Solution #3 works, but it’s unsatisfactory

– Really complex – even for this simple an example

• Hard to convince yourself that this really works

– A’s code is different from B’s – what if you have many threads?

– Code would have to be slightly different for each thread

– While A is waiting, it is consuming CPU time

• This is “busy-waiting”
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Solution #3 discussion

There’s a better way:

• Have hardware provide better (higher-level) 

primitives than atomic load and store

• Build even higher-level programming abstractions 

on this new hardware support
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Too Much Humus: Solution #4
• Let’s make an implementation of a lock (more later). 

– Lock.Acquire() – wait until lock is free, then grab

– Lock.Release() – Unlock, waking up anyone waiting

– Must be atomic operations – if two threads are waiting for the lock and both see it’s free, only 

one succeeds in grabbing the lock

• Then, our humus problem is easy:

  humuslock.Acquire();

  if (noHumus)

     buy humus;

  humuslock.Release();

• Section of code between Acquire() and Release() is a “Critical Section”

• You can make this even simpler: suppose you are out of ice cream instead of humus

– Skip the test since you always need more ice cream.
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Where are we going with synchronization?
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Programs Shared Programs

Higher 

Level API

Locks, Semaphores, Monitors, 

Send/Receive

Hardware
Load/Store, Disable Interrupts, Test & 

Set, Compare & Swap

• We are going to implement various higher-level 

synchronization primitives using atomic operations

– Everything is pretty painful if the only atomic primitives are load 

and store

– Need to provide primitives which are useful at user-level



So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors
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Atomic Read-Modify-Write instructions

• Problems with interrupts only based solution:

1. Can’t give lock implementation to users

2. Doesn’t work well on multiprocessor

• Disabling interrupts on all processors requires messages and would be very time consuming

• Alternative: Atomic Instruction Sequences
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Instructions that read a 
value from memory and 

write a new value 
atomically

Hardware is responsible for 
implementing this correctly 

• On uniprocessors (not too hard) 

• On multiprocessors (requires help 
from cache coherence protocol)

Unlike disabling interrupts, 
can be used on both 
uniprocessors and 

multiprocessors



Examples of Read-Modify-Write 

test&set (&address) {  /* most architectures */

 result = M[address];

 M[address] = 1;

 return result;

}

swap (&address, register) { /* x86 */

 temp = M[address];

 M[address] = register;

 register = temp;

}
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Examples of Read-Modify-Write 

compare&swap (&address, reg1, reg2) { /* 68000 */

 if (reg1 == M[address]) {

  M[address] = reg2;

  return success;

 } else {

  return failure;

 }

}
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Examples of Read-Modify-Write 

load-linked&store conditional(&address) { 

 /* R4000, alpha */

    loop:

  ll r1, M[address];

  movi r2, 1;    /* Can do arbitrary comp */

  sc r2, M[address];

  beqz r2, loop;

}

7 Dec 2025 SE 317: Operating Systems 70



Implementing Locks with test&set

• Another flawed, but simple solution:

  int value = 0; // Free

  Acquire() {
  while (test&set(value)); // while busy
 }

  Release() {
  value = 0;
 }

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now busy.  It returns 0 so while 

exits.

– If lock is busy, test&set reads 1 and sets value=1 (no change). It returns 1, so while loop 
continues

– When we set value = 0, someone else can get lock

• Busy-Waiting: thread consumes cycles while waiting
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Positives Negatives

• Very inefficient because the busy-

waiting thread consumes cycles 

waiting

• Waiting thread may take cycles 

away from thread holding lock (no 

one wins!)

• Priority Inversion: If busy-waiting 

thread has higher priority than 

thread holding lock  no progress!

– Priority Inversion problem with original 

Martian rover
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Problem: Busy-Waiting for Lock

• Machine can receive interrupts

• User code can use the lock

• Works on a multiprocessor



Priority inversion
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Calvin and Hobbes by Bill Watterson for October 14, 1986

https://www.gocomics.com/calvinandhobbes/1986/10/14



Priority Inversion
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High priority process

Low priority process

Locked

Waiting for



Priority Inversion
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High priority process

Low priority process

Wait Queue



Problem: Busy-Waiting for Lock
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For semaphores and monitors, 
waiting thread may wait for an 
arbitrary length of time!

• Even if busy-waiting OK for locks, 
definitely not ok for other primitives

• Homework/exam solutions should 
not have busy-waiting!



Multiprocessor Spin Locks: test&test&set

• A better solution for multiprocessors:

  int mylock = 0; // Free
  Acquire() {
   do {
    while(mylock);   // Wait until might be free

  } while(test&set(&mylock)); // exit if get lock
  }

  Release() {
  mylock = 0;
 }

• Simple explanation:
– Wait until lock might be free (only reading – stays in cache)

– Then, try to grab lock with test&set

– Repeat if fail to actually get lock

• Issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

– However, it does not impact other processors!
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Can we build test&set locks without busy-waiting?

• Can’t entirely, but can minimize!

• Idea: only busy-wait to atomically check lock value

int guard = 0;
int value = FREE;
Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
  put thread on wait queue;
  go to sleep() & guard = 0;
 } else {
  value = BUSY;
  guard = 0;
 }
}

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
  take thread off wait queue
  Place on ready queue;
 } else {
  value = FREE;
 }
guard = 0;
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Better Locks using test&set

• Note: sleep has to be sure to reset the guard variable
• Why can’t we do it just before or just after the sleep?



So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors
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Higher-level Primitives than Locks

• Goal so far:

– What is the right abstraction for synchronizing threads that share memory?

– Want as high a level primitive as possible

• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find bugs, since they happen rarely

– UNIX is stable now, but up until mid-80s (10 years after started), systems running UNIX 

would crash every week or so – concurrency bugs

• Synchronization is a way of coordinating multiple concurrent activities that are 

using shared state

– We need paradigms to structure the sharing

7 Dec 2025 SE 317: Operating Systems 80



Semaphores

• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

• Definition: A Semaphore has a non-negative integer value and supports the 

following two operations:

– P(): an atomic operation that waits for semaphore to become positive, then decrements it 

by 1 

• Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore by 1, waking up a waiting P, if 

any

• Think of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in 

Dutch
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Semaphores Like Integers Except

• Semaphores are like integers, except

– No negative values

– Only operations allowed are P and V – can’t read or write value, except to set it initially

– Operations must be atomic

• Two P’s together can’t decrement value below zero

• Similarly, thread going to sleep in P won’t miss wakeup from V – even if they both happen at 

same time

• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:
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Railroad Analogy Step 1
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Value=2



Railroad Analogy Step 2
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Value=1



Railroad Analogy Step 3
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Value=1



Railroad Analogy Step 4
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Value=0



Railroad Analogy Step 5
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Value=0



Railroad Analogy Step 6
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Value=0



Railroad Analogy Step 7
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Value=1



Railroad Analogy Step 7

7 Dec 2025 SE 317: Operating Systems 90

Value=0



Mutual Exclusion

• Initial value = 1

• Also called “Binary Semaphore”.

• Can be used for mutual exclusion:

 semaphore.P();
// Critical section // goes 
here
semaphore.V();

Scheduling Constraints

• Initial value = 0

• What if you want a thread to wait 
for something?

• Example: Implement ThreadJoin 
(wait for a thread to terminate):

 Initial value of semaphore 
= 0

 ThreadJoin {
   semaphore.P();
}

 ThreadFinish {
   semaphore.V();
}

7 Dec 2025 SE 317: Operating Systems 91

Two Uses of Semaphores



Semaphores

• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

• Definition: A Semaphore has a non-negative integer value and supports the 

following two operations:

– P(): an atomic operation that waits for semaphore to become positive, then decrements it 

by 1 

• Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore by 1, waking up a waiting P, if 

any

• Think of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in 

Dutch
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Mutual Exclusion

• Initial value = 1

• Also called “Binary Semaphore”.

• Can be used for mutual exclusion:

 semaphore.P();
// Critical section // goes 
here
semaphore.V();

Scheduling Constraints

• Initial value = 0

• What if you want a thread to wait 
for something?

• Example: Implement ThreadJoin 
(wait for a thread to terminate):

 Initial value of semaphore 
= 0

 ThreadJoin {
   semaphore.P();
}

 ThreadFinish {
   semaphore.V();
}
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A Bounded Buffer
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Producer Buffer Consumer



Producer-consumer with a bounded buffer
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Problem Definition

• Producer puts things into a shared 
buffer

• Consumer takes them out

• Need synchronization to coordinate 
producer/consumer

Don’t want producer and 
consumer to have to work in 
lockstep, so put a fixed-size buffer 
between them

• Synchronize access to the buffer

• Producer needs to wait if buffer is full

• Consumer needs to wait if buffer is empty

Example: Drink machine

• Producer can put limited number of 
bottles in machine

• Consumer can’t take bottles out if 
machine is empty

Example:: GCC

• cpp | cc1 | cc2 | as | ld



Correctness constraints for solution

• Correctness Constraints:

– Consumer must wait for producer 

to fill buffers, if all are empty 

(scheduling constraint)

– Producer must wait for consumer 

to empty buffers, if all are full 

(scheduling constraint)

– Only one thread can manipulate 

buffer queue at a time (mutual 

exclusion)

• Remember why we need 

mutual exclusion

– Computers are stupid

– Imagine if in real life: the delivery 

person is filling the machine and 

somebody comes up and tries to 

stick their money into the 

machine
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Correctness constraints for solution

• General rule of thumb: 

Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint

– Semaphore emptyBuffers;// producer’s constraint

– Semaphore mutex;       // mutual exclusion
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Full Solution to Bounded Buffer
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Semaphore fullBuffer = 0; // Initially, no pop

 Semaphore emptyBuffers = numBuffers;
    // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptyBuffers.P(); // Wait until space
 mutex.P(); // Wait until buffer free
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers there is
    // more pop
}

 Consumer() {
 fullBuffers.P(); // Check if there’s a pop
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptyBuffers.V(); // tell producer need more
 return item;
}



Discussion about Solution

• Why asymmetry?

– Producer does: emptyBuffer.P(), fullBuffer.V()

– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?

– Yes!  Can cause deadlock

• Is order of V’s important?

– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?

– Do we need to change anything?
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So Far

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors
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Motivation for Monitors and Condition Variables

Semaphores are a huge 
step up

• Try to do the bounded buffer with 
only loads and stores

Problem:

• Semaphores are dual purpose:

• They are used for both mutex and 
scheduling constraints

Example:

• That flipping P’s in bounded buffer 
gives deadlock is not immediately 
obvious.

• How do you prove correctness to 
someone?

Cleaner idea:

• Use locks for mutual exclusion and 
condition variables for scheduling 
constraints
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Conclusion

• Cooperating threads

• Concurrency challenge

• Motivation for Synchronization and Locks

• Atomic Read-Modify-Write Operations

• Higher Level Synchronization Atoms

– Semaphores

– Monitors
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