
16 Nov 2025 SE 317: Operating Systems 1

Interrupts, Kernel Stack,

Scheduler, SMT, fork()

16 November 2025

Lecture 4

Slides adapted from John Kubiatowicz (UC Berkeley)

Lecturer: Dr. Michael J. May

Kinneret College

Concept Review

16 Nov 2025 SE 317: Operating Systems 2

Dual mode

Base and bound

• Absolute

• With adder
uPC (user PC)

Syscall Interrupt Trap/Exception

Address space
translation

Topics for Today

• Interrupt Handling and Kernel Stack

• Processes and Scheduler

• Digging Deeper: SMT

• fork()

16 Nov 2025 SE 317: Operating Systems 3

Concepts today

16 Nov 2025 SE 317: Operating Systems 4

Which head to use now?
https://vignette.wikia.nocookie.net/reddwarf/images/c/c9/Spareheads.jpg/revision/latest?cb=20140602034628

16 Nov 2025 SE 317: Operating Systems 5

Discern: Context

16 Nov 2025 SE 317: Operating Systems 6

I’m running

Process 123

I’m running

Process 156

I’m running

Process 184

I’m running

an interrupt

I’m running

Process

184 in

kernel

mode

Process context versus Interrupt context

Hardware support: Interrupt Control

16 Nov 2025 SE 317: Operating Systems 7

Interrupt Handler
invoked with

interrupts ‘disabled’

• Re-enabled upon
completion

• Non-blocking (run
to completion, no
waits)

• Pack it up in a
queue and pass
off to an OS
thread to do the
hard work

• Wake up an
existing OS
thread

OS kernel may
enable/disable

interrupts

• On x86: CLI
(disable
interrupts), STI
(enable)

• Atomic section
when selecting
next
process/thread to
run

• Atomic return
from interrupt or
syscall

Hardware may
have multiple levels

of interrupt

• Mask off (disable)
certain interrupts,
(ex. lower priority
ones)

• Certain non-
maskable-
interrupts (nmi)

• Ex. kernel
segmentation
fault

Interrupt Controller

16 Nov 2025 SE 317: Operating Systems 8

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

CPU

Int

Disable

Timer

In
te

rru
p
t M

a
s
k

P
rio

rity
 E

n
c
o
d
e
r

Software Interrupt

IntID

Interrupt

How do we take interrupts safely?

16 Nov 2025 SE 317: Operating Systems 9

Interrupt vector

• Limited number of entry
points into kernel

Kernel interrupt stack

• Handler works regardless of
state of user code

Interrupt masking

• Handler is non-blocking

Atomic transfer of control

• “Single instruction”-like to change
the following:

• Program counter

• Stack pointer

• Memory protection

• Kernel/user mode

Transparent restartable
execution

• User program does not know
interrupt occurred

Interrupts on x86: Before

16 Nov 2025 SE 317: Operating Systems 10

User-level Process

Code:
foo() {
 while (…) {
 x=x+1;
 y=y+1;
 }
}
Stack:

SS:ESP

CS:EIP

EFLAGS

Other registers:

EAX, EBX

Registers

Kernel

Code:
Handler(){
 pusha
 …
}

Exception

Stack:

Interrupts on x86: During

16 Nov 2025 SE 317: Operating Systems 11

User-level Process

Code:
foo() {
 while (…) {
 x=x+1;
 y=y+1;
 }
}
Stack:

SS:ESP

CS:EIP

EFLAGS

Other registers:

EAX, EBX

Registers

Kernel

Code:
Handler(){
 pusha
 …
}
Exception

Stack:

SS

ESP

EFLAGS

CS

EIP

Error

Kernel System Call Handler

16 Nov 2025 SE 317: Operating Systems 12

Locate
arguments

• In registers
or on user(!)
stack

Copy
arguments

• From user
memory into
kernel memory

• Protect kernel
from malicious
code evading
checks

Validate
arguments

• Protect kernel
from errors in
user code Do

something
!

Copy back

• Copy
results
back into
user
memory

So Far

• Interrupt Handling and Kernel Stack

• Processes and Scheduler

• Digging Deeper: SMT

• fork()

16 Nov 2025 SE 317: Operating Systems 16

Running Many Programs?

• We have the mechanism to

– Switch between user processes and the kernel

– Switch between user processes

– Protect OS from user processes and processes from each other

Questions:

• How do we decide which user process to run?

• How does the OS record and manage user processes?

• How do we serialize the process and set it aside?

• How do we build a stack and heap for the kernel?

• How do we avoid wasting memory?

16 Nov 2025 SE 317: Operating Systems 17

Process Control Block

• Kernel represents each process as a Process Control Block (PCB)

– Status (running, ready, blocked, …)

– Register state (when not running)

– Process ID (PID), User, Executable, Priority, …

– Execution time, …

– Memory space, translation, …

• Kernel Scheduler maintains a data structure containing the PCBs

• Scheduling algorithm selects the next one to run

16 Nov 2025 SE 317: Operating Systems 18

Scheduler

16 Nov 2025 SE 317: Operating Systems 19

if (readyProcesses(PCBs)) {
 nextPCB = selectProcess(PCBs);
 run(nextPCB);
} else {
 run_idle_process();
}

Putting it together: Web Server

16 Nov 2025 SE 317: Operating Systems 20

syscall
syscall

RTU RTU

Interrupt
Interrupt

wait wait

So Far

• Interrupt Handling and Kernel Stack

• Processes and Scheduler

• Digging Deeper: SMT

• fork()

16 Nov 2025 SE 317: Operating Systems 21

16 Nov 2025 SE 317: Operating Systems 22

Digging Deeper:

SMT

Simultaneous MultiThreading/Hyperthreading

Hardware technique

• Superscalar processors can execute

multiple instructions that are independent.

• Hyperthreading duplicates register state

to make a second “thread,” allowing

more instructions to run.

Can schedule each thread as if were

separate CPU

• But, sub-linear speedup!

Original technique called “Simultaneous Multithreading”

• http://www.cs.washington.edu/research/smt/index.html

• SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

16 Nov 2025 SE 317: Operating Systems 23

Colored blocks show instructions executed

http://www.cs.washington.edu/research/smt/index.html
http://www.cs.washington.edu/research/smt/index.html

16 Nov 2025 SE 317: Operating Systems 24

So Far

• Interrupt Handling and Kernel Stack

• Processes and Scheduler

• Digging Deeper: SMT

• fork()

16 Nov 2025 SE 317: Operating Systems 25

Option 1: Build a new one

1. Allocate resources for new process
– memory, virtual CPU, etc.

2. Assign task – an executable file

3. Assign ownership – user, parent
process

4. Assign priority

5. Load task into an image

6. Mark it ready to run

7. Add it to ready queue

Who does steps 1-4?

Option 2: Copy existing one

16 Nov 2025 SE 317: Operating Systems 26

Can a process create a process? How?

1. Copy all attributes of existing

process

2. Change parts necessary in new

process – task, memory, virtual

CPU, priority, ownership

3. Make modified process child of

original process

4. Run modified process

Who does steps 1-3?

https://openclipart.org/detail/284231/chicken-with-eggs

Cloning

16 Nov 2025 SE 317: Operating Systems 27

© 2024 Dav Pilkey

https://pilkey.com/legal

The UNIX/Linux way

Process ID

• Unique identity of process is the “process ID” (or
pid).

• fork() creates a copy of current process with
a new pid

State of original process duplicated in
both Parent and Child!

• Memory, File Descriptors (next topic), etc

Return value from fork(): integer

• When > 0

• Running in (original) Parent process

• Return value is pid of new child

• When = 0

• Running in new Child process

• When < 0

• Error! Must handle somehow, running in original process

16 Nov 2025 SE 317: Operating Systems 28

fork1.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{
 char buf[BUFSIZE];
 size_t readlen, writelen, slen;
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 exit(1);
 }
 exit(0);
}

16 Nov 2025 SE 317: Operating Systems 29

How to tell them apart?

16 Nov 2025 SE 317: Operating Systems 30

© 2011 - Fox Searchlight

• http://www.gocomics.com/calvinandhobbes/1990/01/09

• http://www.gocomics.com/calvinandhobbes/1990/01/11

16 Nov 2025 SE 317: Operating Systems 31

http://www.gocomics.com/calvinandhobbes/1990/01/09
http://www.gocomics.com/calvinandhobbes/1990/01/09
http://www.gocomics.com/calvinandhobbes/1990/01/11
http://www.gocomics.com/calvinandhobbes/1990/01/11

https://meaww.com/orphan-black-the-next-chapter-tatiana-maslany-teases-new-clones-fate-of-old-characters-10-years

16 Nov 2025 SE 317: Operating Systems 33

© BBC AMERICA

fork2.c
int status;

…

cpid = fork();

if (cpid > 0) { /* Parent Process */

 mypid = getpid();

 printf("[%d] parent of [%d]\n", mypid, cpid);

 tcpid = wait(&status);

 printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */

 mypid = getpid();

 printf("[%d] child\n", mypid);

}

…

16 Nov 2025 SE 317: Operating Systems 34

Fork and Wait

16 Nov 2025 SE 317: Operating Systems 35

pid=fork();
if (pid==0)
 exec(…);
else
 wait(pid);

pid=fork();
if (pid==0)
 exec(…);
else
 wait(pid);

pid=fork();
if (pid==0)
 exec(…);
else
 wait(pid);

fork

main(){
…
}

exec

wait

Shell

• A shell is a job control system

– Allows programmer to create and manage a set of programs to do some task

– Windows, MacOS, Linux all have shells

• Example: to compile a C program

cc –c sourcefile1.c

cc –c sourcefile2.c

ln –o program sourcefile1.o sourcefile2.o

./program

16 Nov 2025 SE 317: Operating Systems 36

process-race.c
int i;
cpid = fork();
if (cpid > 0) {
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 for (i = 0; i< 100; i++) {
 printf("[%d] parent: %d\n", mypid, i);
 // sleep(1);
 }
}
else if (cpid == 0) {
 mypid = getpid();
 printf("[%d] child\n", mypid);
 for (i = 0; i > -100; i--) {
 printf("[%d] child: %d\n", mypid, i);
 // sleep(1);
 }
}

16 Nov 2025 SE 317: Operating Systems 37

What does this program print?

Does it change if you add the sleep?

Conclusion

• Interrupt Handling and Kernel Stack

• Processes and Scheduler

• Digging Deeper: SMT

• fork()

16 Nov 2025 SE 317: Operating Systems 38

	Slide 1: Interrupts, Kernel Stack, Scheduler, SMT, fork() 16 November 2025 Lecture 4
	Slide 2: Concept Review
	Slide 3: Topics for Today
	Slide 4: Concepts today
	Slide 5: Which head to use now? https://vignette.wikia.nocookie.net/reddwarf/images/c/c9/Spareheads.jpg/revision/latest?cb=20140602034628
	Slide 6: Discern: Context
	Slide 7: Hardware support: Interrupt Control
	Slide 8: Interrupt Controller
	Slide 9: How do we take interrupts safely?
	Slide 10: Interrupts on x86: Before
	Slide 11: Interrupts on x86: During
	Slide 12: Kernel System Call Handler
	Slide 16: So Far
	Slide 17: Running Many Programs?
	Slide 18: Process Control Block
	Slide 19: Scheduler
	Slide 20: Putting it together: Web Server
	Slide 21: So Far
	Slide 22
	Slide 23: Simultaneous MultiThreading/Hyperthreading
	Slide 24
	Slide 25: So Far
	Slide 26: Can a process create a process? How?
	Slide 27: Cloning
	Slide 28: The UNIX/Linux way
	Slide 29: fork1.c
	Slide 30: How to tell them apart?
	Slide 31
	Slide 33: https://meaww.com/orphan-black-the-next-chapter-tatiana-maslany-teases-new-clones-fate-of-old-characters-10-years
	Slide 34: fork2.c
	Slide 35: Fork and Wait
	Slide 36: Shell
	Slide 37: process-race.c
	Slide 38: Conclusion

