Lecturer: Dr. Michael J. May
Kinneret College

Interrupts, Kernel Stack,
Scheduler, SMT, fork()

16 November 2025
Lecture 4

Slides adapted from John Kubiatowicz (UC Berkeley)

16 Nov 2025 SE 317: Operating Systems

Concept Review

Base and bound

Dual mode * Absolute uPC (user PC)
« With adder
Syscall Interrupt Trap/Exception

Address space
translation

16 Nov 2025

SE 317: Operating Systems

Topics for Today

* Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()

16 Nov 2025 SE 317: Operating Systems

Concepts today

arguments handler & \
.‘s Intterrul;i'ser S Q\e'

$Q,\$ 5

\\6‘
\\‘&

0‘%}, rangees use
00 g,) asule
(4

Uy
\g B, 1110 gyt s

@*"
PI‘(I(:ESSES %

4y
Ut e gy %

IS 00965 ‘%‘ s @\‘3‘@'

G

16 Nov 2025

Which head to use now?

https://vignette.wikia.nocookie.net/reddwarf/images/c/c9/Spareheads.jpg/revision/latest?cb=20140602034628

16 Nov 2025 SE 317: Operating Systems

Discern: Context

I’'m running
Process 184

I’'m running
Process 156

I’'m running
Process 123

/I’m running grinmg

Process 3LIE

184 in LI

kernel I’'m running
\/mode an interrupt

Process context versus Interrupt context

16 Nov 2025

SE 317: Operating Systems

Hardware support: Interrupt Control

Interrupt Handler
invoked with

OS kernel may
enable/disable

Hardware may
have multiple levels

interrupts ‘disabled’ interrupts of interrupt

* Re-enabled upon * On x86: CLI « Mask off (disable)
completion (disable certain interrupts,

« Non-blocking (run interrupts), STI (ex. lower priority
to completion, no (enable) ones)
waits) « Atomic section Certain non-

« Packitupina when selecting maskable-
queue and pass next interrupts (nmi)
off to an OS process/thread to - Ex. kernel
thread to do the run segmentation
hard work « Atomic return fault
« Wake up an from interrupt or

existing OS syscall
thread

16 Nov 2025

SE 317: Operating Systems

Interrupt Controller

\

]

IntID

CPU

[]Int
Disable

Interrupt

)Se 1dniiaju|
Japoou7 Ajuond

Timer | | Software Interrupt

Interrupts invoked with interrupt lines from devices
Interrupt controller chooses interrupt request to honor
— Mask enables/disables interrupts

— Priority encoder picks highest enabled interrupt

— Software Interrupt Set/Cleared by Software

— Interrupt identity specified with ID line

CPU can disable all interrupts with internal flag

Non-maskable interrupt line (NMI) can’t be disabled

16 Nov 2025 SE 317: Operating Systems

How do we take interrupts safely?

Interrupt vector Kernel interrupt stack Interrupt masking
 Limited number of entry « Handler works regardless of « Handler is non-blocking
points into kernel state of user code
Atomic transfer of control Transparent restartable
« “Single instruction’-like to change execution
the following:

« User program does not know
* Program counter interrupt occurred
« Stack pointer

 Memory protection
» Kernel/user mode

16 Nov 2025 SE 317: Operating Systems

Interrupts on x86: Before

User-level Process Kernel
Code: Code:
foo() { Handler(){
while (..) { Registers pusha
X=X+1; SS'ESP
y=y+1; CS:EIP }
} EFLAGS
} Other registers: Exception
Stack: EAX, EBX Stack:

16 Nov 2025 SE 317: Operating Systems

Interrupts on x86: During

User-level Process

Code:
foo()

while (..) {

Stack:

{

X=X+1;
y=y+1;

Kernel
Code:
Handler(){
Registers pusha
SS:ESP
CS:EIP }
EFLAGS Exception
Other registers: Stack:
EAX, EBX SS

ESP
EFLAGS
CS

EIP

Error

16 Nov 2025

SE 317: Operating Systems

11

Kernel System Call Handler

Locate
arguments
* In registers

or on user(!)
stack

/Copy
arguments

* From user
memory into
kernel memory

* Protect kernel
from malicious
code evading
checks

~

/\/alidate
arguments
* Protect kernel

from errors in
user code

o

~

4)
Do
something
!

N _/

(c

» Copy
results

user

opy back

back into

memory

~

16 Nov 2025

SE 317: Operating Systems

12

So Far

 Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()

16 Nov 2025 SE 317: Operating Systems

16

Running Many Programs?

We have the mechanism to

— Switch between user processes and the kernel
— Switch between user processes
— Protect OS from user processes and processes from each other

Questions:

How do we decide which user process to run?

How does the OS record and manage user processes?
How do we serialize the process and set it aside?

How do we build a stack and heap for the kernel?

How do we avoid wasting memory?

16 Nov 2025 SE 317: Operating Systems

17

Process Control Block

« Kernel represents each process as a Process Control Block (PCB)
— Status (running, ready, blocked, ...)
— Register state (when not running)
— Process ID (PID), User, Executable, Priority, ...
— Execution time, ...
— Memory space, translation, ...

« Kernel Scheduler maintains a data structure containing the PCBs
« Scheduling algorithm selects the next one to run

16 Nov 2025 SE 317: Operating Systems

Scheduler

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle process();

}

16 Nov 2025

SE 317: Operating Systems

19

Putting it together: Web Server

Server . I
reques 4. parse request reply
buffer p q 9. format reply buffer
1. network/\ 10. network 5.file N
\ read copy write Sysca copy
Kernel RTU RTU
11. kernel copy
from user buffer
into network buffer Interru pt
Interrupt /N N
12. format outgoing 6. disk .
Z. Copy arriving cket and DMA request 7. disk
packet (DMA) P 9 data (DMA)
Hardware
WV WV

Network Interface Disk Interface

16 Nov 2025 SE 317: Operating Systems

So Far

 Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()

16 Nov 2025 SE 317: Operating Systems

21

Digging Deeper:
SMT

16 Nov 2025

SE 317: Operating Systems

22

Simultaneous MultiThreading/Hyperthreading

a) superscalar 6) multiprocessor 8) Hyper-
architecture architecture Threading

Hardware technique

* Superscalar processors can execute
multiple instructions that are independent.

« Hyperthreading duplicates register state
to make a second “thread,” allowing
more instructions to run.

Can schedule each thread as if were

L
separate CPU I ﬁ

Thread 0 B Thread 1

i

Time (CPU eycles)

<€

° =i |
BUt’ SUb “near Speedup' Colored blocks show instructions executed
Original technique called “Simultaneous Multithreading”

 http://www.cs.washington.edu/research/smt/index.html
« SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

16 Nov 2025 SE 317: Operating Systems

http://www.cs.washington.edu/research/smt/index.html
http://www.cs.washington.edu/research/smt/index.html

Ttem Value

0S Name Microsoft Windows 10 Pro

Version 10.0.17134 Build 17134

Other OS Description Not Available

0OS Manufacturer Microsoft Corporation

System Name

System Manufacturer Dell Inc.

System Model Latitude 5590

System Type x6d-based PC

System SKU 0817

Processor Intel (R) Core(TM) 1i7-8650U CPU @ 1.90GHz, 2112 Mhz, 4 Core(s), 8 Logical Processor(s)
BIOS Version/Date Dell Inc. 1.3.2, 6/8/2018

16 Nov 2025 SE 317: Operating Systems 24

So Far

* Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()

16 Nov 2025 SE 317: Operating Systems

25

Can a process create a process? How?

Option 1: Build a new one Eg Windows Option 2: Copy existing one &
1. Allocate resources for new process 1. Copy all attributes of existing

— memory, virtual CPU, etc. process
2. Assign task — an executable file 2. Change parts necessary in new
3. Assign ownership — user, parent process — task, memory, virtual
proc?ess o CPU, priority, ownership
4. Assign prlc?rlty _ 3. Make modified process child of
5. Load task into an image original process
6. Mark. It ready to run 4. Run modified process
/. Add it to ready queue

Who does steps 1-47? Who does steps 1-37

| https://openclipart.org/detail/284231/chicken-with-eggs |

16 Nov 2025 SE 317: Operating Systems 26

Cloning

© 2024 Dav Pilkey

27

SE 317: Operating Systems

16 Nov 2025

https://pilkey.com/legal

The UNIX/Linux way

Process ID

« Unique identity of process is the “process ID” (or
pid).

e fork() creates a copy of current process with
a new pid

State of original process duplicated in
both Parent and Child!

« Memory, File Descriptors (next topic), etc

Return value from fork(): integer

* When>0
« Running in (original) Parent process
« Return value is pid of new child

* When=20
* Running in new Child process

* When<0

« Error! Must handle somehow, running in original process

16 Nov 2025 SE 317: Operating Systems 28

fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{
char buf[BUFSIZE];
size t readlen, writelen, slen;
pid_t cpid, mypid;
pid t pid = getpid(); /* get current processes PID */
printf("Parent pid: %d\n", pid);
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
} else {
perror("Fork failed");
exit(1);
}
exit(0);

16 Nov 2025

SE 317: Operating Systems

29

How to tell them apart?

T o - -

AN OTBER" FARTH

© 2011 - Fox Searchlight

16 Nov 2025 SE 317: Operating Systems

 http://www.gocomics.com/calvinandhobbes/1990/01/09

* http://www.gocomics.com/calvinandhobbes/1990/01/11

16 Nov 2025 SE 317: Operating Systems

31

http://www.gocomics.com/calvinandhobbes/1990/01/09
http://www.gocomics.com/calvinandhobbes/1990/01/09
http://www.gocomics.com/calvinandhobbes/1990/01/11
http://www.gocomics.com/calvinandhobbes/1990/01/11

https://meaww.com/orphan-black-the-next-chapter-tatiana-maslany-teases-new-clones-fate-of-old-characters-10-years

- ——

16 Nov 2025 SE 317: Operating Systems

33

fork2.c

int status;

cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

16 Nov 2025 SE 317: Operating Systems

34

Fork and Wait

pid=fork();
if (pid==0)

exec

exec(..);
else
wait(pid);

pid=fork();

if (pid==0)
exec(..);

else
wait(pid);

pid=fork();
if (pid==0)

wait

main(){

exec(..);
else
wait(pid);

16 Nov 2025

SE 317: Operating Systems

35

Shell

* A shell is a job control system
— Allows programmer to create and manage a set of programs to do some task
— Windows, MacQOS, Linux all have shells

« Example: to compile a C program
cC —-c sourcefilel.c
CC -C sourcefile2.c
ln -0 program sourcefilel.o sourcefile2.o
./program

16 Nov 2025 SE 317: Operating Systems

36

process-race.c

int i;
cpid = fork();
if (cpid > 0) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (1 = 0; i< 100; i++) {
printf("[%d] parent: %d\n", mypid, 1i);
// sleep(l);
}
}
else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i =0; i > -100; i--) |
printf("[%d] child: %d\n", mypid, i);

} // sleep(1); What does this program print?
Does it change if you add the sleep?

}

16 Nov 2025 SE 317: Operating Systems

Conclusion

* Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()

16 Nov 2025 SE 317: Operating Systems

38

	Slide 1: Interrupts, Kernel Stack, Scheduler, SMT, fork() 16 November 2025 Lecture 4
	Slide 2: Concept Review
	Slide 3: Topics for Today
	Slide 4: Concepts today
	Slide 5: Which head to use now? https://vignette.wikia.nocookie.net/reddwarf/images/c/c9/Spareheads.jpg/revision/latest?cb=20140602034628
	Slide 6: Discern: Context
	Slide 7: Hardware support: Interrupt Control
	Slide 8: Interrupt Controller
	Slide 9: How do we take interrupts safely?
	Slide 10: Interrupts on x86: Before
	Slide 11: Interrupts on x86: During
	Slide 12: Kernel System Call Handler
	Slide 16: So Far
	Slide 17: Running Many Programs?
	Slide 18: Process Control Block
	Slide 19: Scheduler
	Slide 20: Putting it together: Web Server
	Slide 21: So Far
	Slide 22
	Slide 23: Simultaneous MultiThreading/Hyperthreading
	Slide 24
	Slide 25: So Far
	Slide 26: Can a process create a process? How?
	Slide 27: Cloning
	Slide 28: The UNIX/Linux way
	Slide 29: fork1.c
	Slide 30: How to tell them apart?
	Slide 31
	Slide 33: https://meaww.com/orphan-black-the-next-chapter-tatiana-maslany-teases-new-clones-fate-of-old-characters-10-years
	Slide 34: fork2.c
	Slide 35: Fork and Wait
	Slide 36: Shell
	Slide 37: process-race.c
	Slide 38: Conclusion

