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Concept Review

Base and bound

Dual mode * Absolute uPC (user PC)
« With adder
Syscall Interrupt Trap/Exception

Address space
translation
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Topics for Today

* Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()
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Concepts today
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Which head to use now?

https://vignette.wikia.nocookie.net/reddwarf/images/c/c9/Spareheads.jpg/revision/latest?cb=20140602034628
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Discern: Context

I’'m running
Process 184

I’'m running
Process 156

I’'m running
Process 123

/I’m running grinmg

Process 3LIE

184 in LI

kernel I’'m running
\/mode an interrupt

Process context versus Interrupt context
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Hardware support: Interrupt Control

Interrupt Handler
invoked with

OS kernel may
enable/disable

Hardware may
have multiple levels

interrupts ‘disabled’ interrupts of interrupt

* Re-enabled upon * On x86: CLI « Mask off (disable)
completion (disable certain interrupts,

« Non-blocking (run interrupts), STI (ex. lower priority
to completion, no (enable) ones)
waits) « Atomic section  Certain non-

« Packitupina when selecting maskable-
queue and pass next interrupts (nmi)
off to an OS process/thread to - Ex. kernel
thread to do the run segmentation
hard work « Atomic return fault
« Wake up an from interrupt or

existing OS syscall
thread
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Interrupt Controller

\

]

IntID

CPU

[]Int
Disable

Interrupt

)Se 1dniiaju|
Japoou7 Ajuond

Timer | | Software Interrupt

Interrupts invoked with interrupt lines from devices
Interrupt controller chooses interrupt request to honor
— Mask enables/disables interrupts

— Priority encoder picks highest enabled interrupt

— Software Interrupt Set/Cleared by Software

— Interrupt identity specified with ID line

CPU can disable all interrupts with internal flag

Non-maskable interrupt line (NMI) can’t be disabled
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How do we take interrupts safely?

Interrupt vector Kernel interrupt stack Interrupt masking
 Limited number of entry « Handler works regardless of « Handler is non-blocking
points into kernel state of user code
Atomic transfer of control Transparent restartable
« “Single instruction’-like to change execution
the following:

« User program does not know
* Program counter interrupt occurred
« Stack pointer

 Memory protection
» Kernel/user mode
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Interrupts on x86: Before

User-level Process Kernel
Code: Code:
foo() { Handler(){
while (..) { Registers pusha
X=X+1; SS'ESP
y=y+1; CS:EIP }
} EFLAGS
} Other registers: Exception
Stack: EAX, EBX Stack:
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Interrupts on x86: During

User-level Process

Code:
foo()

while (..) {

Stack:

{

X=X+1;
y=y+1;

Kernel
Code:
Handler(){
Registers pusha
SS:ESP
CS:EIP }
EFLAGS Exception
Other registers: Stack:
EAX, EBX SS

ESP
EFLAGS
CS

EIP

Error
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Kernel System Call Handler

Locate
arguments
* In registers

or on user(!)
stack

/Copy
arguments

* From user
memory into
kernel memory

* Protect kernel
from malicious
code evading
checks

~

/\/alidate
arguments
* Protect kernel

from errors in
user code

o

~

4 )
Do
something
!

N _/

(c

» Copy
results

user

opy back

back into

memory

~
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So Far

 Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()
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Running Many Programs?

We have the mechanism to

— Switch between user processes and the kernel
— Switch between user processes
— Protect OS from user processes and processes from each other

Questions:

How do we decide which user process to run?

How does the OS record and manage user processes?
How do we serialize the process and set it aside?

How do we build a stack and heap for the kernel?

How do we avoid wasting memory?
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Process Control Block

« Kernel represents each process as a Process Control Block (PCB)
— Status (running, ready, blocked, ...)
— Register state (when not running)
— Process ID (PID), User, Executable, Priority, ...
— Execution time, ...
— Memory space, translation, ...

« Kernel Scheduler maintains a data structure containing the PCBs
« Scheduling algorithm selects the next one to run
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Scheduler

if ( readyProcesses(PCBs) ) {
nextPCB = selectProcess(PCBs);
run( nextPCB );

} else {
run_idle process();

}
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Putting it together: Web Server

Server . I
reques 4. parse request reply
buffer p q 9. format reply buffer
1. network/\ 10. network 5.file N
\ read copy write Sysca copy
Kernel RTU RTU
11. kernel copy
from user buffer
into network buffer Interru pt
Interrupt /N N
12. format outgoing 6. disk .
Z. Copy arriving cket and DMA request 7. disk
packet (DMA) P 9 data (DMA)
Hardware
WV WV

Network Interface Disk Interface
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So Far

 Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()
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Digging Deeper:
SMT
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Simultaneous MultiThreading/Hyperthreading

a) superscalar 6) multiprocessor 8) Hyper-
architecture architecture Threading

Hardware technique

* Superscalar processors can execute
multiple instructions that are independent.

« Hyperthreading duplicates register state
to make a second “thread,” allowing
more instructions to run.

Can schedule each thread as if were

L
separate CPU I ﬁ

Thread 0 B Thread 1

i

Time (CPU eycles)

<€

° =i |
BUt’ SUb “near Speedup' Colored blocks show instructions executed
Original technique called “Simultaneous Multithreading”

 http://www.cs.washington.edu/research/smt/index.html
« SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5
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Ttem Value

0S Name Microsoft Windows 10 Pro

Version 10.0.17134 Build 17134

Other OS Description Not Available

0OS Manufacturer Microsoft Corporation

System Name

System Manufacturer Dell Inc.

System Model Latitude 5590

System Type x6d-based PC

System SKU 0817

Processor Intel (R) Core(TM) 1i7-8650U CPU @ 1.90GHz, 2112 Mhz, 4 Core(s), 8 Logical Processor(s)
BIOS Version/Date  Dell Inc. 1.3.2, 6/8/2018
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So Far

* Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()
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Can a process create a process? How?

Option 1: Build a new one Eg Windows Option 2: Copy existing one &
1. Allocate resources for new process 1. Copy all attributes of existing

— memory, virtual CPU, etc. process
2. Assign task — an executable file 2. Change parts necessary in new
3. Assign ownership — user, parent process — task, memory, virtual
proc?ess o CPU, priority, ownership
4. Assign prlc?rlty _ 3. Make modified process child of
5. Load task into an image original process
6. Mark. It ready to run 4. Run modified process
/. Add it to ready queue

Who does steps 1-47? Who does steps 1-37

| https://openclipart.org/detail/284231/chicken-with-eggs |
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Cloning

© 2024 Dav Pilkey

27
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https://pilkey.com/legal

The UNIX/Linux way

Process ID

« Unique identity of process is the “process ID” (or
pid).

e fork() creates a copy of current process with
a new pid

State of original process duplicated in
both Parent and Child!

« Memory, File Descriptors (next topic), etc

Return value from fork(): integer

* When>0
« Running in (original) Parent process
« Return value is pid of new child

* When=20
* Running in new Child process

* When<0

« Error! Must handle somehow, running in original process
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fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{
char buf[BUFSIZE];
size t readlen, writelen, slen;
pid_t cpid, mypid;
pid t pid = getpid(); /* get current processes PID */
printf("Parent pid: %d\n", pid);
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
} else {
perror("Fork failed");
exit(1);
}
exit(0);
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How to tell them apart?

T o - -

AN OTBER" FARTH

© 2011 - Fox Searchlight

16 Nov 2025 SE 317: Operating Systems



 http://www.gocomics.com/calvinandhobbes/1990/01/09

* http://www.gocomics.com/calvinandhobbes/1990/01/11
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https://meaww.com/orphan-black-the-next-chapter-tatiana-maslany-teases-new-clones-fate-of-old-characters-10-years
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fork2.c

int status;

cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
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Fork and Wait

pid=fork();
if (pid==0)

exec

exec(..);
else
wait(pid);

pid=fork();

if (pid==0)
exec(..);

else
wait(pid);

pid=fork();
if (pid==0)

wait

main(){

exec(..);
else
wait(pid);
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Shell

* A shell is a job control system
— Allows programmer to create and manage a set of programs to do some task
— Windows, MacQOS, Linux all have shells

« Example: to compile a C program
cC —-c sourcefilel.c
CC -C sourcefile2.c
ln -0 program sourcefilel.o sourcefile2.o
./program
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process-race.c

int i;
cpid = fork();
if (cpid > 0 ) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (1 = 0; i< 100; i++) {
printf("[%d] parent: %d\n", mypid, 1i);
// sleep(l);
}
}
else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i =0; i > -100; i--) |
printf("[%d] child: %d\n", mypid, i);

} // sleep(1); What does this program print?
Does it change if you add the sleep?

}
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Conclusion

* Interrupt Handling and Kernel Stack
* Processes and Scheduler

» Digging Deeper: SMT

e fork()
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