
2 Nov 2025 SE 317: Operating Systems 1

History, VMs, 4 Main

Concepts

2 November 2025

Lecture 2

Slides adapted from John Kubiatowicz (UC Berkeley)

Lecturer: Dr. Michael J. May

Kinneret College

Main concepts from last time

Operating
system

Many core Process Program

2 Nov 2025 SE 317: Operating Systems 2

Loading
Address
space

Controller Bus

Main concepts from last time

2 Nov 2025 SE 317: Operating Systems 3

Topics for Today

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode

2 Nov 2025 SE 317: Operating Systems 4

Today’s concepts

2 Nov 2025 SE 317: Operating Systems 5

Very Brief History of OS

2 Nov 2025 SE 317: Operating Systems 6

• Several Distinct Phases:

Hardware Expensive,
Humans Cheap

• Eniac, Multics

Hardware Cheaper,
Humans Expensive

• PCs

• Workstations

• Rise of GUIs

Hardware Really
Cheap, Humans
Really Expensive

• Ubiquitous devices

• Widespread networking

ENIAC (source: US Army)

2 Nov 2025 SE 317: Operating Systems 7

“I think there is a world market
for maybe five computers”

• Attributed to Thomas J.

Watson in 1943

• Probably never said, but

in 1953, IBM assumed

only 20 prospective

companies could buy the

IBM 701

IBM type 704 (source: Langley
NACA)

2 Nov 2025 SE 317: Operating Systems 8

IBM Beginnings

The First GUIs: XEROX

2 Nov 2025 SE 317: Operating Systems 9

B
y
 S

o
u
rc

e
 (

W
P

:N
F

C
C

#
4
),

 F
a

ir
 u

s
e

Today: Hand held

2 Nov 2025 SE 317: Operating Systems 10

Image source: Blue Ion
http://www.blueion.com/blog/2014/01/07/too-big-to-ignore/

First computer in IDF

2 Nov 2025 SE 317: Operating Systems 11

First computer in IDF

2 Nov 2025 SE 317: Operating Systems 12

Evolving Hardware & OS

Batch
Multiprogra

mming
Timesharing

Graphical
UI

Ubiquitous
Devices

2 Nov 2025 SE 317: Operating Systems 13

Making new OS is expensive

Small OS

• 100K lines

Large OS

• 10M lines

• 5M in a browser!

100-1000
person-years

of effort

2 Nov 2025 SE 317: Operating Systems 14

OS Archaeology
• Because of the cost of developing an OS from scratch, most

modern OSes have a long lineage:

• Multics → AT&T Unix → BSD Unix → Ultrix, SunOS,
NetBSD,…

• Mach (micro-kernel) + BSD → NextStep → XNU → Apple
OSX, iPhone iOS

• Linux → Android OS

• CP/M → QDOS → MS-DOS → Windows 3.1 → NT → 95 → 98
→ 2000 → XP → Vista → 7 → 8 → phone → 10 → 11…

• Linux → RedHat, Ubuntu, Fedora, Debian, Suse,…

2 Nov 2025 SE 317: Operating Systems 15

So Far

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode

2 Nov 2025 SE 317: Operating Systems 16

Virtual Machine Abstraction

2 Nov 2025 SE 317: Operating Systems 17

Application

Operating System

Hardware

• Software Engineering Problem:
– Turn hardware/software quirks  what programmers want/need

– Optimize for convenience, utilization, security, reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):
– What’s the hardware interface? (physical reality) Hardware

Abstraction Layer (HAL) hides

– What’s the application interface? (nicer abstraction)

Virtual Machine Interface

Physical Machine Interface

Virtual Machines

2 Nov 2025 SE 317: Operating Systems 18

• Software emulation of an abstract machine

– Give programs illusion they own the machine

– Make it look like hardware has features you want

• Three types of “Virtual Machines”

– Container: Isolate processes from one another at the file system

and environment variables

– Process VM: supports the execution of a single program; this

functionality typically provided by OS

– System VM: supports the execution of an entire OS and its

applications (e.g., VMWare Fusion, Virtual box, Parallels Desktop,

Xen)

Containers

• Virtual Machine light (VM--)

– Less isolation than full VM

– Shared physical resources (scheduler, main memory)

– Separate parts of file system, OS libraries

• Popular for isolating applications and reducing potential

conflicts

2 Nov 2025 SE 317: Operating Systems 19

Process VMs
• Programming simplicity

– Each process thinks it has all memory/CPU time

– Each process thinks it owns all devices

– Different devices appear to have same high level interface

– Device interfaces more powerful than raw hardware

• Bitmapped display  windowing system

• Ethernet card  reliable, ordered, networking (TCP/IP)

• Fault Isolation
– Processes unable to directly impact other processes

– Bugs cannot crash whole machine

• Protection and Portability
– Java interface safe and stable across many platforms

2 Nov 2025 SE 317: Operating Systems 20

System VMs: Layers of OSes

2 Nov 2025 SE 317: Operating Systems 21

• Useful for OS development

– When OS crashes, restricted to one VM

– Can aid testing programs on other OSs

How it looks

2 Nov 2025 SE 317: Operating Systems 22

Why not in a browser?

2 Nov 2025 SE 317: Operating Systems 23

Of course, this is sandboxed…

VM inside a VM

2 Nov 2025 SE 317: Operating Systems 24

Why not run a VM inside a VM?

Turtles all the way down…

Im
a

g
e

 c
re

d
it
:
R

a
v
e

llo
 S

y
s
te

m
s

VMs in Action

Every cloud
service provider

Shared
hardware for

servers

Data Centers

Rapid
provisioning,
scale up, and
load balancing

2 Nov 2025 SE 317: Operating Systems 25

So Far

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode

2 Nov 2025 SE 317: Operating Systems 26

Most Likely:

• Memory Management

• I/O Management

• CPU Scheduling

• Communications?

(Does Email belong in

OS?)

• Multitasking/multiprog

ramming?

What about?

• File System?

• Multimedia Support?

• User Interface?

• Internet Browser? ☺

2 Nov 2025 SE 317: Operating Systems 27

What is an OS, Really?

Is this only interesting to academics?

https://xkcd.com/1118/

2 Nov 2025 SE 317: Operating Systems 28

Top 10 Tech Companies 2024

2 Nov 2025 SE 317: Operating Systems 29

https://companiesmarketcap.com/tech/largest-tech-companies-by-market-cap/

D
e
v
e
lo

p
s
 t

h
e
ir
 o

w
n
 O

S
?

Operating System “Definition”

No universally accepted
definition

“Everything a vendor ships
when you order an
operating system” is good
approximation

• But varies wildly

“The one program running
at all times on the
computer” is the kernel.

• Everything else is either a
system program (ships with the
operating system) or an
application program

2 Nov 2025 SE 317: Operating Systems 30

4 Fundamental OS Concepts

2 Nov 2025 SE 317: Operating Systems 31

Thread

• Single unique execution
context

• Program Counter, Registers,
Execution Flags, Stack

Address Space with
Translation

• Programs execute in an
address space that is distinct
from the memory space of the
physical machine

Process

• An instance of an executing
program is a process
consisting of an address space
and one or more threads of
control

Dual Mode operation/Protection

• Only the “system” can access certain
resources

• The OS and the hardware are protected
from user programs and user programs
are isolated from one another by
controlling the translation from program
virtual addresses to machine physical
addresses

OS’ Bottom Line: Run Stuff

2 Nov 2025 SE 317: Operating Systems 32

1. Load instruction and data segments of executable file into

memory

2. Create stack and heap

3. “Transfer control to it”

4. Provide services to it

5. While protecting OS and it

Data

Instructions

OS

Stack

Heap

Data

Instructions

0xFFF…

0x000…

PC

RegistersProcessor

Memory

Editor

Program source code

Executable

a.exe

Compiler

L
o

a
d

 a
n

d
 E

x
e

c
u

te

The Instruction Cycle

2 Nov 2025 SE 317: Operating Systems 33

Memory

Instruction

Data

NextProcessor

PC:

Decode

Instruction Fetch

Decode

RegistersExecute

ALU

What happens during program execution?

2 Nov 2025 SE 317: Operating Systems 34

…

Data1

Data0

Inst237

Inst236

…

Inst5

Inst4

Inst3

Inst2

Inst1

Inst0

Addr 232 − 1

Addr 0

PC

PC

PC
PC

R0

…

R31

F0

…

F30

PC

Fetch

Exec

Execution sequence:

• Fetch Instruction at PC

• Decode

• Execute (possibly using registers)

• Write results to registers/mem

• PC = Next Instruction(PC)

• Repeat

First OS Concept: Thread of Control

• Thread: Single unique execution context

– Program Counter, Registers, Execution Flags, Stack

• A thread is executing on a processor when it is resident in

the processor registers.

• PC register holds the address of executing instruction in

the thread.

• Certain registers hold the context of thread

– Stack pointer holds the address of the top of stack

• Other conventions: Frame Pointer, Heap Pointer, Data

– May be defined by the instruction set architecture or by compiler

conventions

• Registers hold the root state of the thread.

– The rest is “in memory”

2 Nov 2025 SE 317: Operating Systems 35

So Far

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode

2 Nov 2025 SE 317: Operating Systems 36

Protecting Programs

• Problem: Run multiple applications in such a way that

they are protected from one another

• Goal:

– Keep User Programs from crashing the OS

– Keep User Programs from crashing each other

– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:

– Address Translation

– Dual Mode Operation

Simple Policy:

• Programs are not allowed to read/write memory of other

Programs or of the Operating System

2 Nov 2025 SE 317: Operating Systems 37

Later

2 Nov 2025 SE 317: Operating Systems 38

Threads View

2 Nov 2025 SE 317: Operating Systems 39

Address Translation

2 Nov 2025 SE 317: Operating Systems 40

• Address Space

– A group of memory addresses usable by something

– Each program (process) and kernel has potentially different address
spaces.

• Address Translation:

– Translate from Virtual Addresses (emitted by CPU) into Physical
Addresses (of memory)

– Mapping often performed in Hardware by Memory Management Unit
(MMU)

MMU

Virtual

Addresses

Physical

Addresses

You can’t read or corrupt what

you can’t ask for

2 Nov 2025 SE 317: Operating Systems 41

https://cdn3.whatculture.com/images/2015/03/The-Matrix-Neo-Mouth.jpg

Example of Address Translation

2 Nov 2025 SE 317: Operating Systems 42

Program 1

Virtual

Address

Space 1

Program 2

Virtual

Address

Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &

Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS data

Translation Map 1 Translation Map 2

Physical Address Space

Address Translation Details
• For now, assume translation happens with table (called a

Page Table):

• Translation helps protection:
– Control translations, control access

– Should Users be able to change Page Table???

2 Nov 2025 SE 317: Operating Systems 43

Virtual
Address

Page Table

index
into
page
table

V
Access
Rights PA

V page no. offset
10

table located
in physical
memory

P page no. offset

10

Physical
Address

Address Space: In a Picture

2 Nov 2025 SE 317: Operating Systems 44

• What’s in the code segment? Data?

• What’s in the stack segment?

– How is it allocated? How big is it?

• What’s in the heap segment?

– How is it allocated? How big?

Data

Code

Segment

Heap

Stack

0xFFF…

0x000…

Processor Registers

PC:
SP:

Instruction

Multiprogramming – Multiple Threads of Control

2 Nov 2025 SE 317: Operating Systems 45

Data

Code

Heap

Stack

Data

Code

Heap

Stack

Data

Code

Heap

Stack
Proc

1

Proc

2

Proc

3

OS

How can we give the illusion of multiple processors?

2 Nov 2025 SE 317: Operating Systems 46

• Assume a single processor.

How do we provide the illusion

of multiple processors?

– Multiplex in time!

• Each virtual “CPU” needs a

structure to hold:

– Program Counter (PC), Stack

Pointer (SP)

– Registers (Integer, Floating

point, others…?)

Shared memory

vCPU1 vCPU3vCPU2
vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

• How switch from one virtual

CPU to the next?

– Save PC, SP, and registers in

current state block

– Load PC, SP, and registers from

new state block

• What triggers switch?

– Timer, voluntary yield, I/O, other

things

Conclusion

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode

2 Nov 2025 SE 317: Operating Systems 47

	Slide 1: History, VMs, 4 Main Concepts 2 November 2025 Lecture 2
	Slide 2: Main concepts from last time
	Slide 3: Main concepts from last time
	Slide 4: Topics for Today
	Slide 5: Today’s concepts
	Slide 6: Very Brief History of OS
	Slide 7: ENIAC (source: US Army)
	Slide 8: IBM Beginnings
	Slide 9: The First GUIs: XEROX
	Slide 10: Today: Hand held
	Slide 11: First computer in IDF
	Slide 12: First computer in IDF
	Slide 13: Evolving Hardware & OS
	Slide 14: Making new OS is expensive
	Slide 15: OS Archaeology
	Slide 16: So Far
	Slide 17: Virtual Machine Abstraction
	Slide 18: Virtual Machines
	Slide 19: Containers
	Slide 20: Process VMs
	Slide 21: System VMs: Layers of OSes
	Slide 22: How it looks
	Slide 23: Why not in a browser?
	Slide 24: VM inside a VM
	Slide 25: VMs in Action
	Slide 26: So Far
	Slide 27: What is an OS, Really?
	Slide 28: https://xkcd.com/1118/
	Slide 29: Top 10 Tech Companies 2024
	Slide 30: Operating System “Definition”
	Slide 31: 4 Fundamental OS Concepts
	Slide 32: OS’ Bottom Line: Run Stuff
	Slide 33: The Instruction Cycle
	Slide 34: What happens during program execution?
	Slide 35: First OS Concept: Thread of Control
	Slide 36: So Far
	Slide 37: Protecting Programs
	Slide 38
	Slide 39: Threads View
	Slide 40: Address Translation
	Slide 41: You can’t read or corrupt what you can’t ask for
	Slide 42: Example of Address Translation
	Slide 43: Address Translation Details
	Slide 44: Address Space: In a Picture
	Slide 45: Multiprogramming – Multiple Threads of Control
	Slide 46: How can we give the illusion of multiple processors?
	Slide 47: Conclusion

