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Main concepts from last time

Operating 
system

Many core Process Program
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Main concepts from last time
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Topics for Today

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode
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Today’s concepts
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Very Brief History of OS
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• Several Distinct Phases:

Hardware Expensive, 
Humans Cheap 

• Eniac, Multics

Hardware Cheaper, 
Humans Expensive 

• PCs

• Workstations

• Rise of GUIs

Hardware Really 
Cheap, Humans 
Really Expensive 

• Ubiquitous devices

• Widespread networking



ENIAC (source: US Army)
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“I think there is a world market 
for maybe five computers”

• Attributed to Thomas J. 

Watson in 1943

• Probably never said, but 

in 1953, IBM assumed 

only 20 prospective 

companies could buy the 

IBM 701

IBM type 704 (source: Langley 
NACA)
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IBM Beginnings



The First GUIs: XEROX
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Today: Hand held

2 Nov 2025 SE 317: Operating Systems 10

Image source: Blue Ion
http://www.blueion.com/blog/2014/01/07/too-big-to-ignore/



First computer in IDF
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First computer in IDF
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Evolving Hardware & OS

Batch
Multiprogra

mming
Timesharing

Graphical 
UI

Ubiquitous 
Devices
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Making new OS is expensive

Small OS

• 100K lines

Large OS

• 10M lines

• 5M in a browser!

100-1000 
person-years 

of effort
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OS Archaeology
• Because of the cost of developing an OS from scratch, most 

modern OSes have a long lineage:

• Multics → AT&T Unix → BSD Unix → Ultrix, SunOS, 
NetBSD,…

• Mach (micro-kernel) + BSD → NextStep → XNU → Apple 
OSX, iPhone iOS

• Linux → Android OS

• CP/M → QDOS → MS-DOS → Windows 3.1 → NT → 95 → 98 
→ 2000 → XP → Vista → 7 → 8 → phone → 10 → 11…

• Linux → RedHat, Ubuntu, Fedora, Debian, Suse,…
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So Far

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode
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Virtual Machine Abstraction
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Application

Operating System

Hardware

• Software Engineering Problem: 
– Turn hardware/software quirks  what programmers want/need

– Optimize for convenience, utilization, security, reliability, etc…

• For Any OS area (e.g. file systems, virtual memory, 
networking, scheduling):
– What’s the hardware interface? (physical reality) Hardware 

Abstraction Layer (HAL) hides

– What’s the application interface? (nicer abstraction)

Virtual Machine Interface

Physical Machine Interface



Virtual Machines
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• Software emulation of an abstract machine

– Give programs illusion they own the machine

– Make it look like hardware has features you want

• Three types of “Virtual Machines”

– Container: Isolate processes from one another at the file system  

and environment variables

– Process VM: supports the execution of a single program; this 

functionality typically provided by OS

– System VM: supports the execution of an entire OS and its 

applications (e.g., VMWare Fusion, Virtual box, Parallels Desktop, 

Xen)



Containers

• Virtual Machine light (VM--)

– Less isolation than full VM

– Shared physical resources (scheduler, main memory)

– Separate parts of file system, OS libraries

• Popular for isolating applications and reducing potential 

conflicts
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Process VMs
• Programming simplicity

– Each process thinks it has all memory/CPU time

– Each process thinks it owns all devices

– Different devices appear to have same high level interface

– Device interfaces more powerful than raw hardware

• Bitmapped display  windowing system

• Ethernet card  reliable, ordered, networking (TCP/IP)

• Fault Isolation
– Processes unable to directly impact other processes

– Bugs cannot crash whole machine

• Protection and Portability
– Java interface safe and stable across many platforms
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System VMs: Layers of OSes
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• Useful for OS development

– When OS crashes, restricted to one VM

– Can aid testing programs on other OSs



How it looks
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Why not in a browser?
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Of course, this is sandboxed…



VM inside a VM
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Why not run a VM inside a VM?

Turtles all the way down…
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VMs in Action

Every cloud 
service provider

Shared 
hardware for 

servers

Data Centers

Rapid 
provisioning, 
scale up, and 
load balancing
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So Far

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode
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Most Likely:

• Memory Management

• I/O Management

• CPU Scheduling

• Communications? 

(Does Email belong in 

OS?)

• Multitasking/multiprog

ramming?

What about?

• File System?

• Multimedia Support?

• User Interface?

• Internet Browser? ☺
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What is an OS, Really?

Is this only interesting to academics?



https://xkcd.com/1118/
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Top 10 Tech Companies 2024
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https://companiesmarketcap.com/tech/largest-tech-companies-by-market-cap/
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Operating System “Definition”

No universally accepted 
definition

“Everything a vendor ships 
when you order an 
operating system” is good 
approximation

• But varies wildly

“The one program running 
at all times on the 
computer” is the kernel.  

• Everything else is either a 
system program (ships with the 
operating system) or an 
application program
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4 Fundamental OS Concepts
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Thread

• Single unique execution 
context

• Program Counter, Registers, 
Execution Flags, Stack

Address Space with 
Translation

• Programs execute in an 
address space that is distinct 
from the memory space of the 
physical machine

Process

• An instance of an executing 
program is a process 
consisting of an address space 
and one or more threads of 
control

Dual Mode operation/Protection

• Only the “system” can access certain 
resources

• The OS and the hardware are protected 
from user programs and user programs 
are isolated from one another by 
controlling the translation from program 
virtual addresses to machine physical 
addresses



OS’ Bottom Line: Run Stuff
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1. Load instruction and data segments of executable file into

memory

2. Create stack and heap

3. “Transfer control to it”

4. Provide services to it

5. While protecting OS and it

Data

Instructions

OS

Stack

Heap

Data

Instructions

0xFFF…

0x000…

PC

RegistersProcessor

Memory

Editor

Program source code

Executable

a.exe

Compiler
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The Instruction Cycle
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Memory

Instruction

Data

NextProcessor

PC:

Decode

Instruction Fetch

Decode

RegistersExecute

ALU



What happens during program execution?
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…

Data1

Data0

Inst237

Inst236

…

Inst5

Inst4

Inst3

Inst2

Inst1

Inst0

Addr 232 − 1

Addr 0

PC

PC

PC
PC

R0

…

R31

F0

…

F30

PC

Fetch

Exec

Execution sequence:

• Fetch Instruction at PC 

• Decode

• Execute (possibly using registers)

• Write results to registers/mem

• PC = Next Instruction(PC)

• Repeat 



First OS Concept: Thread of Control

• Thread: Single unique execution context

– Program Counter, Registers, Execution Flags, Stack

• A thread is executing on a processor when it is resident in 

the processor registers.

• PC register holds the address of executing instruction in 

the thread.

• Certain registers hold the context of thread

– Stack pointer holds the address of the top of stack

• Other conventions: Frame Pointer, Heap Pointer, Data

– May be defined by the instruction set architecture or by compiler 

conventions

• Registers hold the root state of the thread.

– The rest is “in memory”
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So Far

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode
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Protecting Programs

• Problem: Run multiple applications in such a way that 

they are protected from one another

• Goal: 

– Keep User Programs from crashing the OS

– Keep User Programs from crashing each other

– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:

– Address Translation

– Dual Mode Operation

Simple Policy:

• Programs are not allowed to read/write memory of other 

Programs or of the Operating System 
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Later
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Threads View
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Address Translation
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• Address Space

– A group of memory addresses usable by something 

– Each program (process) and kernel has potentially different address 
spaces.

• Address Translation:

– Translate from Virtual Addresses (emitted by CPU) into Physical 
Addresses (of memory)

– Mapping often performed in Hardware by Memory Management Unit 
(MMU)

MMU

Virtual

Addresses

Physical

Addresses



You can’t read or corrupt what 

you can’t ask for
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https://cdn3.whatculture.com/images/2015/03/The-Matrix-Neo-Mouth.jpg



Example of Address Translation
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Program 1

Virtual

Address

Space 1

Program 2

Virtual

Address

Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap & 

Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS data

Translation Map 1 Translation Map 2

Physical Address Space



Address Translation Details
• For now, assume translation happens with table (called a 

Page Table):

• Translation helps protection:
– Control translations, control access

– Should Users be able to change Page Table???
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Virtual 
Address

Page Table

index
into
page
table

V
Access
Rights PA

V page no. offset
10

table located
in physical
memory

P page no. offset

10

Physical 
Address



Address Space: In a Picture
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• What’s in the code segment? Data?

• What’s in the stack segment?

– How is it allocated? How big is it?

• What’s in the heap segment?

– How is it allocated?  How big?

Data

Code 

Segment

Heap

Stack

0xFFF…

0x000…

Processor Registers

PC:
SP:

Instruction



Multiprogramming – Multiple Threads of Control
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Data

Code

Heap

Stack

Data

Code

Heap

Stack

Data

Code

Heap

Stack
Proc

1

Proc

2

Proc

3

OS



How can we give the illusion of multiple processors?
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• Assume a single processor.  

How do we provide the illusion 

of multiple processors?

– Multiplex in time!

• Each virtual “CPU” needs a 

structure to hold:

– Program Counter (PC), Stack 

Pointer (SP)

– Registers (Integer, Floating 

point, others…?)

Shared memory

vCPU1 vCPU3vCPU2
vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

• How switch from one virtual 

CPU to the next?

– Save PC, SP, and registers in 

current state block

– Load PC, SP, and registers from 

new state block

• What triggers switch?

– Timer, voluntary yield, I/O, other 

things



Conclusion

• (Brief) OS History

• Virtual Machines

• 4 Main OS Concepts

– Thread

– Address

– Process

– Dual mode
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