File Systems: FFS, NTFS

25 January 2026
Lecture 13

Slides adapted from John Kubiatowicz (UC Berkeley)

25 Jan 2026 SE 317: Operating Systems

Topics for Today

* File Systems
— Unix Fast File System (FFS)
— NTFS

25 Jan 2026 SE 317: Operating Systems

Data Storage

: : Triple Double
Indllgegt tp:)lntedr§ K Inode Indirect Indirect Indirect Data
blomk 2 at SK 1]l File Metadata Blocks Blocks Blocks Blocks
oC an aining % 1800 ——— D
only pointers E 1600 e 200D T -]
w1400 F 200R - T :
« 4KB blocks qwi‘ 1200 | j 3882 S —> -
1024 pointers | S ‘g0]
. o 600 [A . |
4 MB at (.(é- 400 b __________ // /77_\ \\ F—
Level 2 O i N
. 4GB at 3 512 4K 32K 256K 2M 16M128M 1G 8G 64G
Level 3 Containing file size (bytes, log scale, power-of-2 bins)
. 4TB at Figure 4: Histograms of bytes by containing file size
9
Level 4
10
11
12
Indirect Pointer
Double Indirect Pointer
Triple Indirect Pointer
25 Jan 2026 SE 317: Operating Systems 3

Where are inodes stored?

* |In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array In
outermost cylinders

— Header not stored anywhere near the data blocks. To
read a small file, seek to get header, seek back to
data.

— Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They
were each given a uniqgue number, called an
“inumber”)

25 Jan 2026 SE 317: Operating Systems

Where are inodes stored?

o Later versions of UNIX moved the header information to
be closer to the data blocks

— Often, inode for file stored in same cylinder group as parent
directory of the file (makes an 1s of that directory run fast).
Pros:

« UNIX BSD 4.2 puts a portion of the file header array on each of many
cylinders. For small directories, can fit all data, file headers, etc. in
same cylinder = no seeks!

» File headers much smaller than whole block (a few hundred bytes),
so multiple headers fetched from disk at same time

 Reliability: whatever happens to the disk, you can find many of the
files (even if directories disconnected)

— Part of the Fast File System (FFS)
» General optimization to avoid seeks

25 Jan 2026 SE 317: Operating Systems 5

4.2 BSD Locality: Block Groups

* File system volume is divided into a set of block groups
— Close set of tracks

« Data blocks, metadata, and free space interleaved within block

group
— Avoid huge seeks between user data and system structure

« Put directory and its files in common block group

* First-Free allocation of new file blocks

— To expand file, first try successive blocks in bitmap, then choose new
range of blocks

— Few little holes at start, big sequential runs at end of group
— Avoids fragmentation
— Sequential layout for big files

Important: keep 10% or more free!
— Reserve space in the Background

25 Jan 2026 SE 317: Operating Systems 6

4.2 BSD Locality: Block Groups

Block Group 0

Block Group 1

Block Group 2

25 Jan 2026 — cSTiS 7

FFS First Fit Block Allocation

Free

Start of Block Group
e
In use

Write 2 Block File
Start of Block Group
Write Large File
Start of Block Group
25 Jan 2026 SE 317: Operating Systems

FFS

()3 Pros

— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data

(3 Cons

— Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)

— Inefficient encoding when file is mostly contiguous on
disk (no equivalent to superpages)

— Need to reserve 10-20% of free space to prevent
fragmentation

25 Jan 2026 SE 317: Operating Systems

Linux Example: ext2/3 Disk Layout

« Disk divided into block groups
— Provides locality

— Each group has two block-sized bitmaps (free
blocks/inodes)

— Block sizes settable at format time: 1K, 2K, 4K, 8K..

* Actual Inode structure similar to 4.2BSD with 12
direct pointers

« ext3: ext2 with Journaling
— Several degrees of protection with more or less cost

25 Jan 2026 SE 317: Operating Systems

10

Ex: Create a filel.dat under /dirl/ in ext3

Super Block i Group Block Group 0 Root Directory
escriptor Inode Table Len |Name | Inode
Table
0 2 | Block:258 12 |- 2
Block 1 16 Dir123 | 2,109
1 8 | |12 | Dirt 5,033
2 |~ Blocks 6-257
/'3/ JournalContents R s

/ Blocks 2-3 | | |

Block Group 2 Inode Table diril contents

Block Inode # / Len | Name Inode

Bitmap Bitmap | 5,033 | Block:18,431 - 12 2

A DUV B B 1...

5,110 Block:20,002../<\ 16 | 12.Jpg 5,086
Block Block 16 File1.dat | 5,110

T BIocks16,390-16,64/F_|1
ile1.dat contents 16 |14.Jpg | 5,088

I N O I
Blocks 20,002-3, 20,114-7

Block:18,431

A bit more on directories

« Stored in files, can be read, but typically don’t
— System calls to access directories
- Open / Creat traverse the structure
- mkdir /rmdir add/remove entries
- Link / Unlink
 Link existing file to a directory (Not in FAT!)
 Forms a DAG

« When can file be deleted?

— Maintain reference count of links to the file
— Delete after the last reference is gone.

e libc support
- DIR * opendir (const char *dirname)
- struct dirent * readdir (DIR *dirstream)

— int readdir_r (DIR *dirstream, struct dirent *entry,
struct dirent **result)

25 Jan 2026 SE 317: Operating Systems

12

A bit more on directories

/usr

/usr/1lib /jusr/1ib4.3

/Jusr/1lib/foo /usr/lib4.3/foo

25 Jan 2026 SE 317: Operating Systems

13

Large Directories: B-Trees (dirhash)

Search for hash("out2”) = 0x0000c194

. B+Tree Root
Before ||00ad 1102 |b0bf8201 cff1a412
Child Pointer ¥ ; :
: B+Tree Node B+Tree Node B+Tree Node
Before ||0000c195 |00018201 o e e
Child Pointer || : ;
T
B+Tré'éi"l;'é'af-~----....._,.....,_E B+Tree Leaf B+Tree Leaf
Hash ||0000a0d1 [0000b971 0000c194 } | | | } | | } } | | |
Entry Pointer : P B 3 | o L
P PR :"'—"-""'"'—"';—',";'_'-"""“"“'-‘-;"""h"'"""-'--'-:'--‘--'--“--‘--'--'---r- nnnnnnnnnnnnn k _';_,_*') N
Name) .. file1 file2 file9841 outl out2 out16341
File Number (36210429 983211 239341 231121 243212 | 841013 841014 324114
“out2”is file 841014
25 Jan 2026 SE 317: Operating Systems 14

So Far

* File Systems
— Unix Fast File System (FFS)
— NTFS

25 Jan 2026 SE 317: Operating Systems

15

New Technology File System (NTFS)

Default on modern
Windows systems

Instead of FAT or inode
array: Master File Table

 Max 1 KB size for each table
entry

» Variable-sized attribute records
(data or metadata)

Each entry in MFT contains
metadata plus

* File's data directly (for small files)
 Alist of extents (start block, size)
for file's data

* For big files: pointers to other
MFT entries with more extent lists

Add transactions for file
system changes
(journaling)

25 Jan 2026 SE 317: Operating Systems

16

NTFS Small File

Master File Table

MFT Record (small file)

Data attribute

Std. Info.

File Name

Data (resident)

(free)

|

Attribute list

Create time, modify time, access time,
Owner id, security specifier, flags (ro, hid, sys)

25 Jan 2026

SE 317: Operating Systems

NTFS Small File

& really-tiny-file.txt Properties

General Security Details Previous Versions

X
Type offile:

Opens with:

Location:
Size:

Size on disk

Created
Modified.

Accessed

Attributes:

really-tiny-file b

TXT File (o)

Ll Notepad++:afree (GNU Change...

C\Users\Michael\Desktop
512 bytes (512 bytes)
0 bytes

Monday. January 13. 2020, 21257 PM
Monday, January 13, 2020, 21310 PM

Today, January 13. 2020, 213:10 PM

[JRead-only [|Hidden Advanced..

Apply

25 Jan 2026

SE 317: Operating Systems

18

NTFS Medium File

Master File Table

Start

Y

Length /b
\

Y

c
()
X
(4]
©
a)

MFT Reco rd Start + Lengthl_,|

Std. Info. | File Name Data (nonresident) (free)
Start g
|

Length ‘@
,\ -
()
X
(40}
©
-

Start + Length

Y

25 Jan 2026

SE 317: Operating Systems

19

NTFS Multiple Indirect Blocks

MFT Record (big/fragmented file)

Std Info Attribute List Data (non-resident)
l—) | | —
Data (non-resident)
T | | —
Data (non-resident)
T | | —
Data (non-resident)
| v | ":I
25 Jan 2026 SE 317: Operating Systems 20

Huge/Badly Fragmented File

Master File Table

MFT Record
(huge/badly-fragmented file)

T ‘ Std. Info. ‘ Attr. List (nonresident) ‘ ‘
-l |
\ ~ \

;JE‘;‘ Extent with part of attribute list
ii/ } Data (nonresident) ‘

+: +: H

- i } Data (nonresident) ‘ ‘
T . | |

— | —

Data (nonresident) ‘ ‘

[=

+=«] Extent with part of attribute list

} Data (nonresident) ‘ ‘

 —— —
]
-

‘ Data (nonresident)
| |

I —

;‘:'J Extent with part of attribute list

T } Data (nonresident) | ‘ ‘
R | |

— —

/:// } Data (nonresident) ‘ ‘

" SE 31%@@ Systems =

25 Jan 2026

R R A T T TR L

21

NTFS Directories

Directories File's number
implemented as B* identifies its entry in
Trees MFET

MFT entry always

has a file name
attribute

Hard link? Multiple
file name attributes

« Human readable name, in MFT entry

file number of parent dir

25 Jan 2026

SE 317: Operating Systems

22

Conclusion

* File Systems
— Unix Fast File System (FFS)
— NTFS

25 Jan 2026 SE 317: Operating Systems

23

	Default Section
	Slide 1: File Systems: FFS, NTFS 25 January 2026 Lecture 13
	Slide 2: Topics for Today
	Slide 3: Data Storage

	FFS
	Slide 4: Where are inodes stored?
	Slide 5: Where are inodes stored?
	Slide 6: 4.2 BSD Locality: Block Groups
	Slide 7: 4.2 BSD Locality: Block Groups
	Slide 8: FFS First Fit Block Allocation
	Slide 9: FFS
	Slide 10: Linux Example: ext2/3 Disk Layout
	Slide 11: Ex: Create a file1.dat under /dir1/ in ext3
	Slide 12: A bit more on directories
	Slide 13: A bit more on directories
	Slide 14: Large Directories: B-Trees (dirhash)

	NTFS
	Slide 15: So Far
	Slide 16: New Technology File System (NTFS)
	Slide 17: NTFS Small File
	Slide 18: NTFS Small File
	Slide 19: NTFS Medium File
	Slide 20: NTFS Multiple Indirect Blocks
	Slide 21: Huge/Badly Fragmented File
	Slide 22: NTFS Directories
	Slide 23: Conclusion

