
25 Jan 2026 SE 317: Operating Systems 1

File Systems: FFS, NTFS

25 January 2026

Lecture 13

Slides adapted from John Kubiatowicz (UC Berkeley)

Topics for Today

• File Systems

– Unix Fast File System (FFS)

– NTFS

25 Jan 2026 SE 317: Operating Systems 2

Data Storage

25 Jan 2026 SE 317: Operating Systems 3

Inode Array

File

Number

Inode

File Metadata

1

2

3

4

5

6

7

8

9

10

11

12

Indirect Pointer

Double Indirect Pointer

Triple Indirect Pointer

Triple

Indirect

Blocks

Double

Indirect

Blocks

Indirect

Blocks

Data

Blocks

…
…

…

…
…

…

…
…

…
…

Indirect pointers

• Point to a disk

block containing

only pointers

• 4KB blocks

➔1024 pointers

• 4 MB at

Level 2

• 4GB at

Level 3

• 4TB at

Level 4

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file

system, headers stored in special array in

outermost cylinders

– Header not stored anywhere near the data blocks. To

read a small file, seek to get header, seek back to

data.

– Fixed size, set when disk is formatted. At formatting

time, a fixed number of inodes were created (They

were each given a unique number, called an

“inumber”)

25 Jan 2026 SE 317: Operating Systems 4

Where are inodes stored?

• Later versions of UNIX moved the header information to

be closer to the data blocks

– Often, inode for file stored in same cylinder group as parent

directory of the file (makes an ls of that directory run fast).

– Pros:

• UNIX BSD 4.2 puts a portion of the file header array on each of many

cylinders. For small directories, can fit all data, file headers, etc. in

same cylinder  no seeks!

• File headers much smaller than whole block (a few hundred bytes),

so multiple headers fetched from disk at same time

• Reliability: whatever happens to the disk, you can find many of the

files (even if directories disconnected)

– Part of the Fast File System (FFS)

• General optimization to avoid seeks

25 Jan 2026 SE 317: Operating Systems 5

4.2 BSD Locality: Block Groups
• File system volume is divided into a set of block groups

– Close set of tracks

• Data blocks, metadata, and free space interleaved within block

group

– Avoid huge seeks between user data and system structure

• Put directory and its files in common block group

• First-Free allocation of new file blocks

– To expand file, first try successive blocks in bitmap, then choose new

range of blocks

– Few little holes at start, big sequential runs at end of group

– Avoids fragmentation

– Sequential layout for big files

• Important: keep 10% or more free!

– Reserve space in the Background

25 Jan 2026 SE 317: Operating Systems 6

4.2 BSD Locality: Block Groups

25 Jan 2026 SE 317: Operating Systems 7

FFS First Fit Block Allocation

25 Jan 2026 SE 317: Operating Systems 8

Start of Block Group

In use

Free

Start of Block Group

Write 2 Block File

Start of Block Group

Write Large File

FFS

• Pros

– Efficient storage for both small and large files

– Locality for both small and large files

– Locality for metadata and data

• Cons

– Inefficient for tiny files (a 1 byte file requires both an

inode and a data block)

– Inefficient encoding when file is mostly contiguous on

disk (no equivalent to superpages)

– Need to reserve 10-20% of free space to prevent

fragmentation

25 Jan 2026 SE 317: Operating Systems 9

Linux Example: ext2/3 Disk Layout

• Disk divided into block groups

– Provides locality

– Each group has two block-sized bitmaps (free

blocks/inodes)

– Block sizes settable at format time: 1K, 2K, 4K, 8K…

• Actual Inode structure similar to 4.2BSD with 12

direct pointers

• ext3: ext2 with Journaling

– Several degrees of protection with more or less cost

25 Jan 2026 SE 317: Operating Systems 10

Ex: Create a file1.dat under /dir1/ in ext3

25 Jan 2026 SE 317: Operating Systems 11

Super Block

Block 1

Group

Descriptor

Table

0

1

2

3

Blocks 2-3

Block Group 0

Inode Table

2 Block:258

8

Blocks 6-257

Journal Contents

Root Directory

Len Name Inode

12 ... 2

16 Dir123 2,109

12 Dir1 5,033

Block 258

Block Group 2
Inode Table

5,033 Block:18,431

5,110 Block:20,002..

Blocks 16,390-16,641
File1.dat contents

Blocks 20,002-3, 20,114-7

dir1 contents

Len Name Inode

12 ... 2

16 12.Jpg 5,086

16 File1.dat 5,110

16 14.Jpg 5,088

Block:18,431

Block

Bitmap

…1…

Block

16,385

Inode

Bitmap

…1…

Block

16,386

A bit more on directories
• Stored in files, can be read, but typically don’t

– System calls to access directories

– Open / Creat traverse the structure

– mkdir /rmdir add/remove entries

– Link / Unlink
• Link existing file to a directory (Not in FAT!)

• Forms a DAG

• When can file be deleted?

– Maintain reference count of links to the file

– Delete after the last reference is gone.

• libc support
– DIR * opendir (const char *dirname)

– struct dirent * readdir (DIR *dirstream)

– int readdir_r (DIR *dirstream, struct dirent *entry,
 struct dirent **result)

25 Jan 2026 SE 317: Operating Systems 12

A bit more on directories

25 Jan 2026 SE 317: Operating Systems 13

/usr

/usr/lib /usr/lib4.3

/usr/lib4.3/foo/usr/lib/foo

Large Directories: B-Trees (dirhash)

25 Jan 2026 SE 317: Operating Systems 14

So Far

• File Systems

– Unix Fast File System (FFS)

– NTFS

25 Jan 2026 SE 317: Operating Systems 15

New Technology File System (NTFS)

Default on modern
Windows systems

Instead of FAT or inode
array: Master File Table

• Max 1 KB size for each table
entry

• Variable-sized attribute records
(data or metadata)

Each entry in MFT contains
metadata plus

• File's data directly (for small files)

• A list of extents (start block, size)
for file's data

• For big files: pointers to other
MFT entries with more extent lists

Add transactions for file
system changes

(journaling)

25 Jan 2026 SE 317: Operating Systems 16

NTFS Small File

25 Jan 2026 SE 317: Operating Systems 17

Create time, modify time, access time,

Owner id, security specifier, flags (ro, hid, sys)

Data attribute

Attribute list

NTFS Small File

25 Jan 2026 SE 317: Operating Systems 18

NTFS Medium File

25 Jan 2026 SE 317: Operating Systems 19

NTFS Multiple Indirect Blocks

25 Jan 2026 SE 317: Operating Systems 20

MFT Record (big/fragmented file)

Std Info Attribute List … Data (non-resident)

Data (non-resident)

Data (non-resident)

Data (non-resident)

Huge/Badly Fragmented File

25 Jan 2026 21SE 317: Operating Systems

NTFS Directories

Directories
implemented as B*

Trees

File's number
identifies its entry in

MFT

MFT entry always
has a file name
attribute

• Human readable name,
file number of parent dir

Hard link? Multiple
file name attributes

in MFT entry

25 Jan 2026 SE 317: Operating Systems 22

Conclusion

• File Systems

– Unix Fast File System (FFS)

– NTFS

25 Jan 2026 SE 317: Operating Systems 23

	Default Section
	Slide 1: File Systems: FFS, NTFS 25 January 2026 Lecture 13
	Slide 2: Topics for Today
	Slide 3: Data Storage

	FFS
	Slide 4: Where are inodes stored?
	Slide 5: Where are inodes stored?
	Slide 6: 4.2 BSD Locality: Block Groups
	Slide 7: 4.2 BSD Locality: Block Groups
	Slide 8: FFS First Fit Block Allocation
	Slide 9: FFS
	Slide 10: Linux Example: ext2/3 Disk Layout
	Slide 11: Ex: Create a file1.dat under /dir1/ in ext3
	Slide 12: A bit more on directories
	Slide 13: A bit more on directories
	Slide 14: Large Directories: B-Trees (dirhash)

	NTFS
	Slide 15: So Far
	Slide 16: New Technology File System (NTFS)
	Slide 17: NTFS Small File
	Slide 18: NTFS Small File
	Slide 19: NTFS Medium File
	Slide 20: NTFS Multiple Indirect Blocks
	Slide 21: Huge/Badly Fragmented File
	Slide 22: NTFS Directories
	Slide 23: Conclusion

