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File Systems: FFS, NTFS

25 January 2026

Lecture 13

Slides adapted from John Kubiatowicz (UC Berkeley)



Topics for Today

• File Systems

– Unix Fast File System (FFS)

– NTFS
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Data Storage
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only pointers
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➔1024 pointers
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• 4GB at 
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Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file 

system, headers stored in special array in 

outermost cylinders

– Header not stored anywhere near the data blocks. To 

read a small file, seek to get header, seek back to 

data.

– Fixed size, set when disk is formatted. At formatting 

time, a fixed number of inodes were created (They 

were each given a unique number, called an 

“inumber”)
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Where are inodes stored?

• Later versions of UNIX moved the header information to 

be closer to the data blocks

– Often, inode for file stored in same cylinder group as parent 

directory of the file (makes an ls of that directory run fast).

– Pros: 

• UNIX BSD 4.2 puts a portion of the file header array on each of many 

cylinders.  For small directories, can fit all data, file headers, etc. in 

same cylinder  no seeks!

• File headers much smaller than whole block (a few hundred bytes), 

so multiple headers fetched from disk at same time

• Reliability: whatever happens to the disk, you can find many of the 

files (even if directories disconnected)

– Part of the Fast File System (FFS)

• General optimization to avoid seeks
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4.2 BSD Locality: Block Groups
• File system volume is divided into a set of block groups

– Close set of tracks

• Data blocks, metadata, and free space interleaved within block 

group

– Avoid huge seeks between user data and system structure

• Put directory and its files in common block group

• First-Free allocation of new file blocks

– To expand file, first try successive blocks in bitmap, then choose new 

range of blocks

– Few little holes at start, big sequential runs at end of group

– Avoids fragmentation

– Sequential layout for big files

• Important: keep 10% or more free!

– Reserve space in the Background
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4.2 BSD Locality: Block Groups
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FFS First Fit Block Allocation
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FFS

• Pros

– Efficient storage for both small and large files

– Locality for both small and large files

– Locality for metadata and data

• Cons

– Inefficient for tiny files (a 1 byte file requires both an 

inode and a data block)

– Inefficient encoding when file is mostly contiguous on 

disk (no equivalent to superpages)

– Need to reserve 10-20% of free space to prevent 

fragmentation
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Linux Example: ext2/3 Disk Layout

• Disk divided into block groups

– Provides locality

– Each group has two block-sized bitmaps  (free 

blocks/inodes)

– Block sizes settable at format time: 1K, 2K, 4K, 8K…

• Actual Inode structure similar to 4.2BSD with 12 

direct pointers

• ext3: ext2 with Journaling

– Several degrees of protection with more or less cost
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Ex: Create a file1.dat under /dir1/ in ext3
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A bit more on directories
• Stored in files, can be read, but typically don’t

– System calls to access directories

– Open / Creat traverse the structure

– mkdir /rmdir add/remove entries

– Link / Unlink
• Link existing file to a directory (Not in FAT!)

• Forms a DAG

• When can file be deleted?

– Maintain reference count of links to the file

– Delete after the last reference is gone.

• libc support
– DIR * opendir (const char *dirname)

– struct dirent * readdir (DIR *dirstream)

– int readdir_r (DIR *dirstream, struct dirent *entry, 
    struct dirent **result)

25 Jan 2026 SE 317: Operating Systems 12



A bit more on directories
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/usr

/usr/lib /usr/lib4.3

/usr/lib4.3/foo/usr/lib/foo



Large Directories: B-Trees (dirhash)
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So Far

• File Systems

– Unix Fast File System (FFS)

– NTFS
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New Technology File System (NTFS)

Default on modern 
Windows systems

Instead of FAT or inode 
array: Master File Table

• Max 1 KB size for each table 
entry

• Variable-sized attribute records 
(data or metadata)

Each entry in MFT contains 
metadata plus

• File's data directly (for small files)

• A list of extents (start block, size) 
for file's data

• For big files: pointers to other 
MFT entries with more extent lists

Add transactions for file 
system changes 

(journaling)
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NTFS Small File
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Create time, modify time, access time,

Owner id, security specifier, flags (ro, hid, sys)

Data attribute

Attribute list



NTFS Small File
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NTFS Medium File
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NTFS Multiple Indirect Blocks

25 Jan 2026 SE 317: Operating Systems 20

MFT Record (big/fragmented file)

Std Info Attribute List … Data (non-resident)

Data (non-resident)

Data (non-resident)

Data (non-resident)



Huge/Badly Fragmented File

25 Jan 2026 21SE 317: Operating Systems



NTFS Directories

Directories 
implemented as B* 

Trees

File's number 
identifies its entry in 

MFT

MFT entry always 
has a file name 
attribute

• Human readable name, 
file number of parent dir

Hard link? Multiple 
file name attributes 

in MFT entry
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Conclusion

• File Systems

– Unix Fast File System (FFS)

– NTFS
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