Caching Basics and Demand
Paging

25 January 2026
Lecture 13

Slides adapted from John Kubiatowicz (UC Berkeley)

25 Jan 2026 SE 317: Operating Systems

Concept Review

Disk block Spinning HDD
* Sector - Cylinder Logical Block
Defragment * Surface Addressing
 Sector
File header
» File number : File Allocation :
 File attributes File control block Table (FAT) Free list
Inode
* Indirect pointer
* Double indirect pointer Block groups
* Triple indirect pointer
25 Jan 2026 SE 317: Operating Systems 2

Topics for Today

« Caching Basics
« Caching on Address Translations (TLB)
 Demand Paging

25 Jan 2026 SE 317: Operating Systems

Caching Concept

« Cache: a repository for copies that can be accessed more
quickly than the original
— Make frequent case fast and infrequent case less dominant

« Caching underlies many of the techniques that are used today
to make computers fast

— Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, etc...

* Only good if:
— Frequent case frequent enough and
— Infrequent case not too expensive

* Important measure:

» Average Access time =
(Hit Rate x Hit Time) +
(Miss Rate x Miss Time)

| Image source: https://www.drupal.org/files/project-images/squirrel%20cache.jpg

25 Jan 2026 SE 317: Operating Systems 4

In Machine Structures

| Main Memory
CPU E Access time = 100ns (DRAM)
1000

225, Z Access time | Second level Main Memory
CPU e (aRAM) Hioons
1000 1ons

» Average Access time = (Hit Rate x HitTime) + (Miss Rate x MissTime)
* HitRate + MissRate = 1

* HitRate 90% => Average Access Time = 19 ns

* HitRate 99% => Average Access Time = 10.9ns

25 Jan 2026 SE 317: Operating Systems 5

Why Bother with Caching?

(Really Joy’s law)
/

Moore’s law effect

0,
100000 | GRyr
o 10000
O
C
)
E 1000 CPU performance
O Gap grows at
® 0
o 100 50% per year 7%/
10 Memory performance

Time

| Image source: https://images.vice.com/motherboard/content-images/contentimage/no-id/140364245678419.jpg |

25 Jan 2026 SE 317: Operating Systems 6

Another Reason for Caching

ngurilss; Virtual Seg # | Virtual Page # | Offset y
Physical Page # | Offset

Base0 Limit0 7

<Base1 Limit1 Page #0 | V,R
Base2™ Limit2 Page #1 | VR
Base3 Limit3 Page #2! VRW
Base4 Limit4 V Page #3 V.R,W
Base5 Limit5 N Page#4 N
Base6 Limits N Page#5 VRW (Pom? D
Base7 Limit7 V | Access Error Access Error

« We can't afford to translate on every access
— At least three DRAM accesses per actual DRAM access
— Or: perhaps /O if page table partially on disk!
- Even worse: What if we are using caching to make
memory access faster than DRAM access?
« Solution? Cache translations!
— Translation Cache: TLB (“Translation Lookaside Buffer”)

25 Jan 2026 SE 317: Operating Systems 7

Why Does Caching Help”? Locality!

Probability
of reference

7.

/7

%7

7

0 2" —1
« Temporal Locality (Locality in Time):
— Keep recently accessed data items closer to processor
- Spatial Locality (Locality in Space):

— Move contiguous blocks to the upper levels

25 Jan 2026 SE 317: Operating Systems 8

Why Does Caching Help”? Locality!

Lower level
Memory
0000 Upper level
- Memory
-
CPU = Block X Block Y
-
a—— NN

« Temporal Locality (Locality in Time):
— Keep recently accessed data items closer to processor
- Spatial Locality (Locality in Space):

— Move contiguous blocks to the upper levels

25 Jan 2026 SE 317: Operating Systems 9

Memory Hierarchy

« Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology
— Provide access at speed offered by the fastest technology

Secondary
Processor Storage
Core S Secondary BEY
py I O Storage
S| |o||8 s (SSD)
AL & o / Main
o = —— Memory
2 @ (DRAM)
ORI
Core 5 o
— S
A SN g)) ~ o
Q @) @)
Q G Q
5| (3] |°
3)
Speed (ns): 0.3 1 3 10-30 100 100,000 (0.1ms) 10,000,000

SizesB), 499Bs 10kBs 100kBs MBS operingsysd@Bs 100GBs TBs 1¢

Sources of Cache Misses

Compulsory C{Qj Capacity

» Cold start or process « Cache cannot contain
migration, first all blocks access by
reference: first access h
to a block € program

 “Cold” fact of life: not a
whole lot you can do « Solution: increase
about it

cache size
* Note: If you are going o

to run “billions” of \ WE'RE[

. _ |
instruction, Compulsory FULL
Misses are insignificant L

| Image: http://37th.btck.co.uk/SorrywereFull |

25 Jan 2026 SE 317: Operating Systems 1

Sources of Cache Misses

Conflict (collision) Coherence

— Multiple memory locations |nvalidation
mapped to the same cache
location

— Solution 1: increase cache
size

» Other process (e.g., I1/0)
updates memory

— Solution 2: increase
associativity

SOLALLY
TOBER

| Image: https://www.spreadshirt.com/sotally+tober+totally+sober-A101118405 |

25 Jan 2026 SE 317: Operating Systems

12

How Is a Block found in a Cache?

Block Address | Block Offset
Tag Index

\ }
Y \ Y }

Set Data
Select Select

* Index Used to Lookup Candidates in Cache

— Index identifies the set (may be >1 in an associative cache)
« Tag used to identify actual copy

— If no candidates match, then declare cache miss
* Block is minimum quantum of caching

— Data select field used to select data within block
— Many caching applications don’t have data select field

25 Jan 2026 SE 317: Operating Systems

13

Direct Mapped Cache

e Direct Mapped 2« Example: 1 KB

byte cache: Direct Mapped
— The uppermost Cache with 32 B
(32 — N) bits are Blocks
always the Cache — Index chooses
Tag potential block
— The lowest M bits — Tag checked to
are the Byte Select verify block

. — M
(Block Size = 27) — Byte select chooses

byte within block

25 Jan 2026 SE 317: Operating Systems 14

Direct Mapped Cache

31 9 4
Cache tag Cache Index | Byte Select
Valid Bit Cache Tag Cache Data
Byte 31 ...| Byte 1 ByteO 0
Byte 63 ..|Byte 33 |Byte 32 |1
2
3
Byte 1023 | ...| Byte 993 | Byte 992 | 31

25 Jan 2026

SE 317: Operating Systems

15

Direct Mapped Cache

31 9 4
Cache tag Cache Index | Byte Select
EX: 0x50 < Ex: ox01 EXx: 0x00
Valid Bit Cache Tag Cache Data
e = — . — .. |Byte31__ || Byted _|ByteO_1 |
| OX50 Byte 63 | ...|Byte 33 |Byte 32

OOI\).—\IO

Byte 1023 | ...| Byte 993 | Byte 992 | 31

25 Jan 2026 SE 317: Operating Systems 16

Set Associative Cache

 N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel
 Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— Two tags in the set are compared to input in parallel

— Data is selected based on the tag result

8

4

Cache tag

Cache Index | Byte Select

Valid Cache Tag Cache Data

Cache Block 0

Cache Data

Cache Tag Valid

Cache Block 0

AND) Sel:]l

—
N

25 Jan 2026

OR
Hitﬁ Cache Block

17

Set Associative Cache

 N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel
 Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— Two tags in the set are compared to input in parallel
— Data is selected based on the tag result

31 8 4 0
Cache tag Cache Index | Byte Select
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
. ‘1
L r

ﬂ 1 5 ﬁ
AND) set MUX sel0 |
o]
N
25 Jan 2026 T 18

Set Associative Cache

 N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel
 Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— Two tags in the set are compared to input in parallel
— Data is selected based on the tag result

31 8 4 0
Cache tag Cache Index | Byte Select
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
. ‘1
L r

/ ﬂ 1 0 ﬁ
AND) set MUX sel0 |
o]
N
25 Jan 2026 T 19

Set Associative Cache

 N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel
 Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
— Two tags in the set are compared to input in parallel

— Data is selected based on the tag result

8

4

Cache tag

Cache Index | Byte Select

Valid Cache Tag Cache Data

Cache Block 0

Cache Data

Cache Tag Valid

Cache Block 0

re

e g

AND) Sel Mux ’sel0
SR i i

—
N

OR
25 Jan 2026 Hitﬁ Cache Block

20

Fully Associative Cache

* Fully Associative: Every block can hold any line
— Address does not include a cache index
— Compare Cache Tags of all Cache Entries in Parallel

« Example: Block Size=32B blocks
— We need N 27-bit comparators
— Still have byte select to choose from within block

31 4 0
Cache tag Byte Select
Ex: 0x01
Cache Tag Valid Cache Data
=) Byte31 |...[Byte1 |Byte0
=) Byte 63 |...|Byte 33 |Byte 32
(=)
N
a\
_/

25 Jan 2026 SE 317: Operating Systems 21

Where does a Block Get Placed in a Cache?

« Example: Block 12 placed in 8 block cache

Block
number: 1111111111222222222233

©012345678901234567890123456/8901

Set associative:

Direct mapped: Block 12 can go L
Block 12 can go anywhere in set 0 Fully associative:
only into block 4 (12 mod 4) Block 12 can go
(12 mod 8) Set: 9 1 2 3 anywhere
01234567 01234567 01234567

25 Jan 2026 SE 317: Operating Systems 22

Which block to replace on a miss?

— Random
— LRU (Least Recently Used)

Set Associative or Fully Associative:

Easy for Direct Mapped: Only one possibility

2-way 4-way 8-way
Size LRU Random | LRU Random | LRU Random
16KB |5.2% |5.7% 4.7% |5.3% 4.4% |5.0%
64KB |1.9% |2.0% 1.5% |1.7% 1.4% |1.5%
256KB | 1.15% | 1.17% 1.13% | 1.13% 1.12% | 1.12%

(These are old benchmark cache miss rates)

25 Jan 2026

SE 317: Operating Systems

23

What happens on a write?

Write Through Write Back
« The information is written « The information is written only
to both the block in the to the block in the cache.
. — Modified cache block is written
cache and to the block in to main memory only when it is
the lower-level memory replaced

— Question: Is block clean or dirty?

+ G &
— Read misses cannot result — repeated writes not sent to

in writes DRAM
o @ — processor not held up on writes
— Processor held up on ’
writes unless writes — More complex
buffered — Read miss may require

writeback of dirty data

25 Jan 2026 SE 317: Operating Systems 24

So Far

« Caching Basics
« Caching on Address Translations (TLB)
 Demand Paging

25 Jan 2026 SE 317: Operating Systems

25

Caching Applied to Address Translation

Virtual TLB
1000 Cached? Y 5
« Address
CPU : N Y
- (O(Zg?o
0000 Translate
(MMU)

\

Data read or write (untranslated)

Physical
Add ress

« Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

« Can we have a TLB hierarchy?
— Sure: multiple levels at different sizes/speeds

XX Jan 2022

SE 317: Operating Systems

26

What Actually Happens on a TLB Miss?

Hardware traversed page Software traversed Page
tables: tables (like MIPS)
 On TLB miss, hardware On TLB miss, processor
iIn MMU looks at current receives TLB fault
page table to fill TLB . Kernel traverses page
(may walk multiple levels) table to find PTE
— If PTE valid, hardware fills — If PTE valid, fills TLB and
TLB and processor never returns from fault
knows . _ — If PTE marked as invalid,
— If PTE marked as invalid, internally calls Page Fault
causes Page Fault, after handler

which kernel decides what
to do afterwards

XX Jan 2022 SE 317: Operating Systems 27

What Actually Happens on a TLB Miss?

* Most chip sets provide hardware traversal

— Modern operating systems tend to have more
TLB faults since they use translation for many
things

 Examples:
— Shared segments
— User-level portions of an operating system

XX Jan 2022 SE 317: Operating Systems 28

Transparent Exceptions: TLB/Page fault

* How to transparently restart faulting instructions?
— (Consider load or store that gets TLB or Page fault)

— Could we just skip faulting instruction?

* No: need to perform load or store after reconnecting physical
page

« Hardware must help out by saving:

— Faulting instruction and partial state
* Need to know which instruction caused fault
* Is single PC sufficient to identify faulting position??7??
— Processor State: sufficient to restart user thread
« Save/restore registers, stack, etc

« What if an instruction has side-effects?

XX Jan 2022 SE 317: Operating Systems 29

What happens on a Context Switch?

* Need to do something, since TLBs map virtual addresses to

physical addresses
— Address Space just changed, so TLB entries no longer valid!

 What can we do?
— Invalidate TLB: simple but might be expensive
« What if switching frequently between processes?

— Include ProcessID in TLB
 This is an architectural solution: needs hardware

« What if translation tables change?
— For example, to move page from memory to disk or vice versa...

— Must invalidate TLB entry!
« Otherwise, might think that page is still in memory!

— Called “TLB Consistency”

XX Jan 2022 SE 317: Operating Systems

30

What TLB organization makes sense?

* Needs to be really fast

— Critical path of memory access
* |In simplest view: before the cache
* Thus, this adds to access time (reducing cache speed)

— Seems to argue for Direct Mapped or Low Associativity

 However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high!

— Thus the cost of Conflict (Miss Time) is much higher than slightly
increased cost of access (Hit Time)

d~diQBs—— TLB Cache

XX Jan 2022 SE 317: Operating Systems 31

What TLB organization makes sense?

» Thrashing: Continuous conflicts between
dCCEeSSES
— What if use low order bits of page as index into TLB?

 First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

— What if use high order bits as index?
« TLB mostly unused for small programs

d~diQBs—— TLB Cache

XX Jan 2022 SE 317: Operating Systems 32

TLB organization: include protection

* How big does TLB actually have to be?
— Usually small: 128-512 entries
— Not very big, can support higher associativity

* TLB usually organized as fully-associative cache
— Lookup is by Virtual Address
— Returns Physical Address + other info

« What happens when fully-associative is too slow?

— Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

XX Jan 2022 SE 317: Operating Systems

33

TLB organization: include protection

« Example for MIPS R3000:

Xﬂﬂzgs iﬂﬁi‘i' Dirty? |Ref |Valid | Access | ASID
OXFAOO |0x0003 |Y N |Y |RW |34
0x0040 |0x0010 |N vy |y R 0
0x0041 |0x0011 |N v |y |R 0

XX Jan 2022

SE 317: Operating Systems

34

Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:

Virtual Address
|-- 10 bits --|

Virtual Page Number | Offset

TLB Lookup

V | Access Rights

PA

Machines with TLBs go one step further:

They overlap TLB lookup with cache
access.
Works because offset available early

Physical Page Number | Offset

|-- 10 bits --|
Physical Address

XX Jan 2022 SE 317: Operating Systems 35

Overlapping TLB & Cache Access

 Main idea:

— Offset in virtual address exactly covers the “cache
index” and “byte select”

— Thus can select the cached byte(s) in parallel to
perform address translation

Virtual Address: Virtual Page Number Offset

Physical Address: | Tag/Page Number Index |Byte

XX Jan 2022 SE 317: Operating Systems 36

Overlapping TLB & Cache Access: 4KB Cache

Associative 4B
32+ TLB LOOkUp (A \
Index
| Cache |- 1K
20 bits 10 bits 2b
Page# [Disp |00
Hit/Miss X

Framett Hit/Miss

Frame#
« \What if cache size is increased to 8KB? Data

— Overlap not complete

— Need to do something else. See awnnin nian
« Another option: Virtual Caches

— Tags in cache are virtual addresses

— Translation only happens on cache misses

XX Jan 2022 SE 317: Operating Systems 37

Putting Everything Together: Address Translation

Virtual Address

Virtual P1 Index

Virtual P2 Index | Offset

PageTablePtr

Page Page
Table Table
(1stL) (2nd L)

Physical Address

Physical
Memory

- -

Physical
Page #

Offset

XX Jan 2022

SE 317: Operating Systems

38

Putting Everything Together: TLB

Virtual Address Physical
Virtual P1 Index | Virtual P2 Index | Offset Memory
Page Page

Table Table . |

PageThblePtr (15t L) (2nd L) Physical Addressg

Physical | Offset

_ | | Page #
TLB:
XX Jan 2022 SE 317: Operating Systems 39

Putting Everything Together: Cache

Virtual Address Physical
Virtual P1 Index | Virtual P2 Index | Offset Memory
Page Page
Table Table .
PageTablePtr (15t L) (2nd L) Physical Addressg
Physical | Offset
_ | |Page #
Tag
Tag Block
TLB:
| >
XX Jan 2022 SE 317: Operating Systems 40

What happens when ...

Process Virtual Page # Physical Address:
Address
Instruction > MMU — 71 W
Page
Table Offset K

XX Jan 2022 SE 317: Operating Systems 41

What happens when ...

Process

Virtual

— Inst

Address
ruction > MMU

Page
y
Exception

Operating System

Page
Table

Update PT entry

AN
Retry N A
Page Fault ~_
Handler
Scheduler

Physical Address:

Load page
from disk

XX Ja

n 2022

SE 317: Operating Systems

42

What happens when ...

Process thdual Physical Address:
ress
Instruction > VIMU
Page
Table
/,
Operating System
/\
~_
Page Fault ~—
Handler
Scheduler
XX Jan 2022 SE 317: Operating Systems 43

So Far

« Caching Basics
« Caching on Address Translations (TLB)
 Demand Paging

XX Jan 2022 SE 317: Operating Systems

44

Impact of caches on Operating Systems

 Indirect - dealing with cache effects

* Process scheduling
— Which and how many processes are active?
— Large memory footprints versus small ones?
— Priorities?

— Shared pages mapped into Virtual Address Space (VAS) of multiple
processes?

« Impact of thread scheduling on cache performance

— Rapid interleaving of threads (small quantum) may degrade cache
performance

* Increase Average Memory Access Time (AMAT)
» Designing OS data structures for cache performance

« Maintaining the correctness of various caches

— TLB consistency:
« With PT across context switches ?
» Across updates to the PT ?

XX Jan 2022 SE 317: Operating Systems 45

Working Set Model

* As a program executes it transitions through a sequence
of “working sets” consisting of varying sized subsets of
the address space

Addresses

Time

XX Jan 2022 SE 317: Operating Systems 46

Cache Behavior under WS model

—

Hit Rate

A
New working set fits
N
j
0 Cache size

« Amortized by fraction of time the WS is active

« Transitions from one WS to the next

« (Capacity, Conflict, Compulsory misses

« Applicable to memory caches and pages. Others ?

XX Jan 2022 SE 317: Operating Systems

47

Another model of Locality: Zipf

P access(rank) = 1/rank

,‘;20% 1
2 $15% - - 0.8
7] i
§-§10% - —popa=t————— 82

o | .
nczc\‘g 5% —Hit Rate(cache)—— (2
~ O% rrrr1rrr1rr1rrrrrrrirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrIrrrtl O

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Rank
« Likelihood of accessing item of rank r is 1/r¢

« Although rare to access items below the top few, there
are so many that it yields a “*heavy tailed” distribution.

« Substantial value from even a tiny cache
* Substantial misses from even a very large one

XX Jan 2022 SE 317: Operating Systems

Estimated Hit Rate

Demand Paging

 Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year

« But they don’t use all their memory all of the time

— 90-10 rule: programs spend 90% of their time in 10% of their code
— Wasteful to require all of user’s code to be in memory

« Solution: use main memory as cache for disk

Processor
Core o Secondary
Py L o Storage
&l |lol |8 L (SSD)
@ v =3 / Main
@ = —— Memory
@ f::J, = (DRAM)
Core o o L
ol |5 o ==
S| lol||8 Cachin
2| 8|8 J
3 3
w

Secondary
Storage
(Disk)

XX Jan 2022

SE 317: Operating Systems

49

lllusion of Infinite Memory

Virtual
Memory
(4GB)

00,

TLB

/
Page/><
Table

.
l""w
N

Hard Disk

Physical Memory (500GB)

(512MB)

XX Jan 2022

SE 317: Operating Systems

50

lllusion of Infinite Memory

Virtual
Memory
(4GB)

CO

7

TLB

Page/
Table |

DS

Physical Memory

(512MB)

Hard Disk
(500GB)

* Disk is larger than physical memory

— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than

physical memory

* More programs fit into memory, allowing more concurrency

« Transparent Level of Indirection (page table)

— Supports flexible placement of physical data

« Data could be on disk or somewhere across network
— Variable location of data transparent to user program

* Performance issue, not correctness issue

XX Jan 2022

SE 317: Operating Systems

51

Demand Paging is Caching

* S0 we must ask:

— What is block size?
* 1 page

— What is organization of this cache (i.e. direct-mapped, set-

associative, fully-associative)?

» Fully associative: arbitrary virtual—>physical mapping

— How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

— What is page replacement policy? (i.e. LRU, Random...)
» This requires more explanation... (kind of like LRU)

— What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

— What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

XX Jan 2022 SE 317: Operating Systems 52

What is in a Page Table Entry? ...,

« What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page

— Permission bits: valid, read-only, read-write, write-only
« Example: Intel x86 architecture PTE:

— Address in 10, 10, 12-bit offset format
— Intermediate page tables called “Directories”

Page Frame Number Free |O |L |D |[A |[PCD [PWT (U (W |P
(Physical Page Number) | (OS)

31-12 11-9 8 7 6 5 4 3 2 1 ©

XX Jan 2022 SE 317: Operating Systems 53

What is in a Page Table Entry? ...,

Page Frame Number Free |6 |L |[D A [PCD [PWT (U |W [P
(Physical Page Number) | (OS)

31-12 11-9 8 7 6 5 4 3 2 1 ©

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently
Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

P

XX Jan 2022 SE 317: Operating Systems 54

Demand Paging Mechanisms i

* PTE helps us implement demand paging
— Valid = Page in memory, PTE points at physical page

@9 — Not Valid = Page not in memory; use info in PTE to find it on disk
when necessary

« Suppose user references page with invalid PTE?

— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

200000000 00O0C

XX Jan 2022 SE 317: Operating Systems 55

Demand Paging Mechanisms i

« What does OS do on a Page Fault?:

— Choose an old page to replace

— If old page modified (“D = 17), write contents back to disk
— Change the old PTE and any cached TLB to be invalid

— Load new page into memory from disk

— Update page table entry, invalidate TLB for new entry

— Continue thread from original faulting location

« TLB for new page will be loaded when thread continued!

— While pulling pages off disk for one process, OS runs another
process from ready queue

» Suspended process sits on wait queue

XX Jan 2022 SE 317: Operating Systems 56

Some follow-up questions

« During a page fault, where does the OS get a free frame?
— Keeps a free list
— Unix runs a “reaper” if memory gets too full
=i) — As a last resort, evict a dirty page first

o)

« How can we organize these mechanisms?
— Work on the replacement policy

 How many page frames per process?
— Like thread scheduling, need to “schedule” memory resources:
» Utilization? Fairness? Priority?
— allocation of disk paging bandwidth

XX Jan 2022 SE 317: Operating Systems 57

Demand Paging Cost Model

Demand Paging is like caching, so compute Effective Access Time
- EAT = Hit Rate X Hit Time + Miss Rate X Miss Time
- EAT = Hit Time + Miss Rate X Miss Penalty

Example:

Memory access time = 200ns
Average page-fault service time = 8ms
Let p = Probability of miss, 1 —p = Probably of hit
We compute EAT as follows:
EAT = 200ns + p X 8ms
= 200ns + p X 8,000,000ns

If one access out of 1,000 causes a page fault, EAT = 8.2us:
— This is a slowdown by a factor of 40!

What if want slowdown by less than 10%?
- 200ns x 1.1 < EAT = p < 2.5 x 107° (About 1 page fault in 400,000!)

XX Jan 2022 SE 317: Operating Systems

What Factors Lead to Misses”?

Compulsory Misses Capacity Misses
« Pages that have never * Not enough memory.
been paged into memory Must somehow increase
before Size.
* How?
, — One option: Increase
 How might we remove amount of DRAM (not
these misses? quick fix!)
— Prefetching: loading them — Another option: If multiple
into memory before needed processes in memory.

adjust percentage of
memory allocated to each
one!

— Need to predict future
somehow!

XX Jan 2022 SE 317: Operating Systems

What Factors Lead to Misses”?

Conflict Misses Policy Misses

« Technically, conflict « Caused when pages
misses don’t exist in were in memory, but
virtual memory, since it is Kicked out prematurely
a “fully-associative” cache because of the

replacement policy

 How to fix? Better
replacement policy

XX Jan 2022 SE 317: Operating Systems 60

Conclusion

« Caching Basics
« Caching on Address Translations (TLB)
 Demand Paging

25 Jan 2026 SE 317: Operating Systems

61

	Default Section
	Slide 1: Caching Basics and Demand Paging 25 January 2026 Lecture 13
	Slide 2: Concept Review

	Caching Concepts
	Slide 3: Topics for Today
	Slide 4: Caching Concept
	Slide 5: In Machine Structures
	Slide 6: Why Bother with Caching?
	Slide 7: Another Reason for Caching
	Slide 8: Why Does Caching Help? Locality!
	Slide 9: Why Does Caching Help? Locality!
	Slide 10: Memory Hierarchy
	Slide 11: Sources of Cache Misses
	Slide 12: Sources of Cache Misses
	Slide 13: How is a Block found in a Cache?
	Slide 14: Direct Mapped Cache
	Slide 15: Direct Mapped Cache
	Slide 16: Direct Mapped Cache
	Slide 17: Set Associative Cache
	Slide 18: Set Associative Cache
	Slide 19: Set Associative Cache
	Slide 20: Set Associative Cache
	Slide 21: Fully Associative Cache
	Slide 22: Where does a Block Get Placed in a Cache?
	Slide 23: Which block to replace on a miss?
	Slide 24: What happens on a write?

	Applying to Addresses
	Slide 25: So Far
	Slide 26: Caching Applied to Address Translation
	Slide 27: What Actually Happens on a TLB Miss?
	Slide 28: What Actually Happens on a TLB Miss?
	Slide 29: Transparent Exceptions: TLB/Page fault
	Slide 30: What happens on a Context Switch?
	Slide 31: What TLB organization makes sense?
	Slide 32: What TLB organization makes sense?
	Slide 33: TLB organization: include protection
	Slide 34: TLB organization: include protection
	Slide 35: Reducing translation time further
	Slide 36: Overlapping TLB & Cache Access
	Slide 37: Overlapping TLB & Cache Access: 4KB Cache
	Slide 38: Putting Everything Together: Address Translation
	Slide 39: Putting Everything Together: TLB
	Slide 40: Putting Everything Together: Cache
	Slide 41: What happens when …
	Slide 42: What happens when …
	Slide 43: What happens when …
	Slide 44: So Far
	Slide 45: Impact of caches on Operating Systems
	Slide 46: Working Set Model
	Slide 47: Cache Behavior under WS model
	Slide 48: Another model of Locality: Zipf
	Slide 49: Demand Paging
	Slide 50: Illusion of Infinite Memory
	Slide 51: Illusion of Infinite Memory
	Slide 52: Demand Paging is Caching
	Slide 53: What is in a Page Table Entry? (Review)
	Slide 54: What is in a Page Table Entry? (Review)
	Slide 55: Demand Paging Mechanisms
	Slide 56: Demand Paging Mechanisms
	Slide 57: Some follow-up questions
	Slide 58: Demand Paging Cost Model
	Slide 59: What Factors Lead to Misses?
	Slide 60: What Factors Lead to Misses?
	Slide 61: Conclusion

