
25 Jan 2026 SE 317: Operating Systems 1

Caching Basics and Demand

Paging

25 January 2026

Lecture 13

Slides adapted from John Kubiatowicz (UC Berkeley)

Concept Review

Disk block

• Sector
Defragment

Spinning HDD

• Cylinder

• Surface

• Sector

Logical Block
Addressing

File header

• File number

• File attributes File control block
File Allocation
Table (FAT)

Free list

Inode

• Indirect pointer

• Double indirect pointer

• Triple indirect pointer

Block groups

25 Jan 2026 SE 317: Operating Systems 2

Topics for Today

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging

25 Jan 2026 SE 317: Operating Systems 3

Caching Concept
• Cache: a repository for copies that can be accessed more

quickly than the original

– Make frequent case fast and infrequent case less dominant

• Caching underlies many of the techniques that are used today
to make computers fast

– Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, etc…

• Only good if:

– Frequent case frequent enough and

– Infrequent case not too expensive

• Important measure:

• Average Access time =
(Hit Rate x Hit Time) +
(Miss Rate x Miss Time)

25 Jan 2026 SE 317: Operating Systems 4

Image source: https://www.drupal.org/files/project-images/squirrel%20cache.jpg

In Machine Structures

• Average Access time = (Hit Rate x HitTime) + (Miss Rate x MissTime)

• 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 + 𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 = 1

• 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 = 90% => Average Access Time = 19 𝑛𝑠

• 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 = 99% => Average Access Time = 10.9𝑛𝑠

25 Jan 2026 SE 317: Operating Systems 5

Main Memory

(DRAM)Access time = 100ns

Main Memory

(DRAM)

100ns

Second level

cache

(SRAM)

10ns

Access time

= 10ns

Why Bother with Caching?

25 Jan 2026 SE 317: Operating Systems 6

(Really Joy’s law)

Image source: https://images.vice.com/motherboard/content-images/contentimage/no-id/140364245678419.jpg

Another Reason for Caching

25 Jan 2026 SE 317: Operating Systems 7

• We can’t afford to translate on every access
– At least three DRAM accesses per actual DRAM access

– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make
memory access faster than DRAM access?

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Why Does Caching Help? Locality!

25 Jan 2026 SE 317: Operating Systems 8

• Temporal Locality (Locality in Time):

– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):

– Move contiguous blocks to the upper levels

0 2𝑛 − 1

Probability

of reference

Why Does Caching Help? Locality!

25 Jan 2026 SE 317: Operating Systems 9

• Temporal Locality (Locality in Time):

– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):

– Move contiguous blocks to the upper levels

Upper level

Memory

Block X

Lower level

Memory

Block Y

Memory Hierarchy
• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology

– Provide access at speed offered by the fastest technology

Processor

Core

R
e
g
is

te
rs

L
1
 C

a
c
h
e

L
2
 C

a
c
h
e

Core

R
e
g
is

te
rs

L
1
 C

a
c
h
e

L
2
 C

a
c
h
e

L
3
 C

a
c
h
e

(s
h
a
re

d
)

Main

Memory

(DRAM)

Secondary

Storage

(SSD)

Secondary

Storage

(Disk)

Speed (ns): 0.3 1 3 10-30 100 100,000 (0.1ms) 10,000,000

Size (B): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs 25 Jan 2026 SE 317: Operating Systems 10

Compulsory

• Cold start or process
migration, first
reference: first access
to a block

• “Cold” fact of life: not a
whole lot you can do
about it

• Note: If you are going
to run “billions” of
instruction, Compulsory
Misses are insignificant

Capacity

• Cache cannot contain

all blocks access by

the program

• Solution: increase

cache size

25 Jan 2026 SE 317: Operating Systems 11

Sources of Cache Misses

Im
a
g
e
:
h
tt

p
:/

/3
7
th

.b
tc

k
.c

o
.u

k
/S

o
rr

y
w

e
re

F
u

ll

Conflict (collision)

– Multiple memory locations

mapped to the same cache

location

– Solution 1: increase cache

size

– Solution 2: increase

associativity

Coherence

• Invalidation

• Other process (e.g., I/O)

updates memory

25 Jan 2026 SE 317: Operating Systems 12

Sources of Cache Misses

Im
a
g
e
:
h
tt

p
s
:/

/w
w

w
.s

p
re

a
d
s
h
ir
t.

c
o
m

/s
o
ta

lly
+

to
b
e
r+

to
ta

lly
+

s
o
b
e
r-

A
1
0
1
1
1
8
4
0
5

How is a Block found in a Cache?

25 Jan 2026 SE 317: Operating Systems 13

Block Address Block Offset

Tag Index

• Index Used to Lookup Candidates in Cache

– Index identifies the set (may be >1 in an associative cache)

• Tag used to identify actual copy

– If no candidates match, then declare cache miss

• Block is minimum quantum of caching

– Data select field used to select data within block

– Many caching applications don’t have data select field

Data

Select

Set

Select

Direct Mapped Cache

• Direct Mapped 2𝑁

byte cache:
– The uppermost

(32 − 𝑁) bits are

always the Cache

Tag

– The lowest 𝑀 bits

are the Byte Select

(𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 = 2𝑀)

• Example: 1 𝐾𝐵

Direct Mapped

Cache with 32 𝐵

Blocks
– Index chooses

potential block

– Tag checked to

verify block

– Byte select chooses

byte within block

25 Jan 2026 SE 317: Operating Systems 14

Direct Mapped Cache

25 Jan 2026 SE 317: Operating Systems 15

Cache Data

Byte 31 … Byte 1 Byte0 0

Byte 63 … Byte 33 Byte 32 1

2

3

…

Byte 1023 … Byte 993 Byte 992 31

Cache tag Cache Index Byte Select

31 9 4 0

Cache TagValid Bit

Direct Mapped Cache

25 Jan 2026 SE 317: Operating Systems 16

Cache Data

Byte 31 … Byte 1 Byte0 0

Byte 63 … Byte 33 Byte 32 1

2

3

…

Byte 1023 … Byte 993 Byte 992 31

Cache tag Cache Index Byte Select

31 9 4 0

Cache Tag

0x50

Valid Bit

Ex: 0x50 Ex: 0x01 Ex: 0x00

Set Associative Cache

17

• 𝑁-way set associative: 𝑁 entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Cache tag Cache Index Byte Select

31 8 4 0

Cache Data

Cache Block 0

Cache TagValid Cache Data

Cache Block 0

Cache Tag Valid

Compare CompareAND MuxSel1 Sel0
01

OR

Hit! Cache Block25 Jan 2026

Set Associative Cache

18

• 𝑁-way set associative: 𝑁 entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Cache tag Cache Index Byte Select

31 8 4 0

Cache Data

Cache Block 0

Cache TagValid Cache Data

Cache Block 0

Cache Tag Valid

Compare CompareAND MuxSel1 Sel0
01

OR

25 Jan 2026

Set Associative Cache

19

• 𝑁-way set associative: 𝑁 entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Cache tag Cache Index Byte Select

31 8 4 0

Cache Data

Cache Block 0

Cache TagValid Cache Data

Cache Block 0

Cache Tag Valid

Compare CompareAND MuxSel1 Sel0
01

OR

25 Jan 2026

Set Associative Cache

20

• 𝑁-way set associative: 𝑁 entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Cache tag Cache Index Byte Select

31 8 4 0

Cache Data

Cache Block 0

Cache TagValid Cache Data

Cache Block 0

Cache Tag Valid

Compare CompareAND MuxSel1 Sel0
01

OR

Hit! Cache Block25 Jan 2026

Fully Associative Cache

25 Jan 2026 SE 317: Operating Systems 21

• Fully Associative: Every block can hold any line
– Address does not include a cache index

– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators

– Still have byte select to choose from within block

Cache Data

Byte 31 … Byte 1 Byte0

Byte 63 … Byte 33 Byte 32

ValidCache Tag

Cache tag Byte Select

31 4 0

=

=

=

=

Ex: 0x01

Where does a Block Get Placed in a Cache?

• Example: Block 12 placed in 8 block cache

25 Jan 2026 SE 317: Operating Systems 22

Block

number: 1111111111222222222233
01234567890123456789012345678901

01234567

Direct mapped:

Block 12 can go

only into block 4

(12 mod 8)

01234567

Set associative:

Block 12 can go

anywhere in set 0

(12 mod 4)

0 1 2 3Set:

01234567

Fully associative:

Block 12 can go

anywhere

Which block to replace on a miss?

• Easy for Direct Mapped: Only one possibility

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

(These are old benchmark cache miss rates)

25 Jan 2026 SE 317: Operating Systems 23

2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Write Through

• The information is written
to both the block in the
cache and to the block in
the lower-level memory

•
– Read misses cannot result

in writes

•
– Processor held up on

writes unless writes
buffered

Write Back

• The information is written only
to the block in the cache.
– Modified cache block is written

to main memory only when it is
replaced

– Question: Is block clean or dirty?

•
– repeated writes not sent to

DRAM

– processor not held up on writes

•
– More complex

– Read miss may require
writeback of dirty data

25 Jan 2026 SE 317: Operating Systems 24

What happens on a write?

So Far

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging

25 Jan 2026 SE 317: Operating Systems 25

Caching Applied to Address Translation

XX Jan 2022 SE 317: Operating Systems 26

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since

accesses sequential)

– Stack accesses have definite locality of reference

– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

TLBVirtual

Address
Cached?

Y

N

Translate

(MMU)

Physical

Address

Data read or write (untranslated)

Hardware traversed page
tables:

• On TLB miss, hardware

in MMU looks at current

page table to fill TLB

(may walk multiple levels)

– If PTE valid, hardware fills

TLB and processor never

knows

– If PTE marked as invalid,

causes Page Fault, after

which kernel decides what

to do afterwards

Software traversed Page
tables (like MIPS)

• On TLB miss, processor

receives TLB fault

• Kernel traverses page

table to find PTE

– If PTE valid, fills TLB and

returns from fault

– If PTE marked as invalid,

internally calls Page Fault

handler

XX Jan 2022 SE 317: Operating Systems 27

What Actually Happens on a TLB Miss?

What Actually Happens on a TLB Miss?

• Most chip sets provide hardware traversal

– Modern operating systems tend to have more

TLB faults since they use translation for many

things

• Examples:

– Shared segments

– User-level portions of an operating system

XX Jan 2022 SE 317: Operating Systems 28

Transparent Exceptions: TLB/Page fault

• How to transparently restart faulting instructions?

– (Consider load or store that gets TLB or Page fault)

– Could we just skip faulting instruction?

• No: need to perform load or store after reconnecting physical

page

• Hardware must help out by saving:

– Faulting instruction and partial state

• Need to know which instruction caused fault

• Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread

• Save/restore registers, stack, etc

• What if an instruction has side-effects?

XX Jan 2022 SE 317: Operating Systems 29

What happens on a Context Switch?

• Need to do something, since TLBs map virtual addresses to
physical addresses

– Address Space just changed, so TLB entries no longer valid!

• What can we do?

– Invalidate TLB: simple but might be expensive

• What if switching frequently between processes?

– Include ProcessID in TLB

• This is an architectural solution: needs hardware

• What if translation tables change?

– For example, to move page from memory to disk or vice versa…

– Must invalidate TLB entry!

• Otherwise, might think that page is still in memory!

– Called “TLB Consistency”

XX Jan 2022 SE 317: Operating Systems 30

What TLB organization makes sense?

• Needs to be really fast

– Critical path of memory access

• In simplest view: before the cache

• Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity

• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!

– Thus the cost of Conflict (Miss Time) is much higher than slightly

increased cost of access (Hit Time)

XX Jan 2022 SE 317: Operating Systems 31

TLB Cache

What TLB organization makes sense?

• Thrashing: Continuous conflicts between

accesses

– What if use low order bits of page as index into TLB?

• First page of code, data, stack may map to same entry

• Need 3-way associativity at least?

– What if use high order bits as index?

• TLB mostly unused for small programs

XX Jan 2022 SE 317: Operating Systems 32

TLB Cache

TLB organization: include protection

• How big does TLB actually have to be?

– Usually small: 128-512 entries

– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache

– Lookup is by Virtual Address

– Returns Physical Address + other info

• What happens when fully-associative is too slow?

– Put a small (4-16 entry) direct-mapped cache in front

– Called a “TLB Slice”

XX Jan 2022 SE 317: Operating Systems 33

TLB organization: include protection

• Example for MIPS R3000:

XX Jan 2022 SE 317: Operating Systems 34

Virtual

Address

Physical

Address
Dirty? Ref Valid Access ASID

0xFA00 0x0003 Y N Y R/W 34

0x0040 0x0010 N Y Y R 0

0x0041 0x0011 N Y Y R 0

Reducing translation time further

• As described, TLB lookup is in serial with cache lookup:

XX Jan 2022 SE 317: Operating Systems 35

Virtual Address

|-- 10 bits --|

Virtual Page Number Offset

TLB Lookup

V Access Rights PA

Physical Page Number Offset

|-- 10 bits --|

Physical Address

Machines with TLBs go one step further:

• They overlap TLB lookup with cache

access.

• Works because offset available early

Overlapping TLB & Cache Access

XX Jan 2022 SE 317: Operating Systems 36

• Main idea:

– Offset in virtual address exactly covers the “cache

index” and “byte select”

– Thus can select the cached byte(s) in parallel to

perform address translation

Virtual Address: Virtual Page Number Offset

Physical Address: Tag/Page Number Index Byte

Overlapping TLB & Cache Access: 4KB Cache

XX Jan 2022 SE 317: Operating Systems 37

• What if cache size is increased to 8KB?

– Overlap not complete

– Need to do something else. See מבנה המחשב

• Another option: Virtual Caches

– Tags in cache are virtual addresses

– Translation only happens on cache misses

TLB

Cache 1K

4B
32

20 bits 10 bits 2b

Page # Disp 00

Associative

Lookup
Index

Hit/Miss

Frame#
= Hit/Miss

Data

Frame#

Putting Everything Together: Address Translation

XX Jan 2022 SE 317: Operating Systems 38

Virtual Address

Virtual P1 Index Virtual P2 Index Offset

PageTablePtr

Page

Table

(1st L)

Page

Table

(2nd L) Physical Address

Physical

Page #

Offset

Physical

Memory

Putting Everything Together: TLB

XX Jan 2022 SE 317: Operating Systems 39

Virtual Address

Virtual P1 Index Virtual P2 Index Offset

PageTablePtr

Page

Table

(1st L)

Page

Table

(2nd L) Physical Address

Physical

Page #

Offset

Physical

Memory

TLB:

Putting Everything Together: Cache

XX Jan 2022 40

Virtual Address

Virtual P1 Index Virtual P2 Index Offset

PageTablePtr

Page

Table

(1st L)

Page

Table

(2nd L) Physical Address

Physical

Page #

Offset

Physical

Memory

TLB:

Tag Index Byte

Tag Block

SE 317: Operating Systems

What happens when …

XX Jan 2022 SE 317: Operating Systems 41

Instruction

Process

MMU
Page

Table

Physical Address:Virtual

Address
Page #

Frame#

Offset

What happens when …

XX Jan 2022 SE 317: Operating Systems 42

Instruction

Process Physical Address:

Scheduler

Page Fault

Handler

Operating System

Page

Table

MMU

Virtual

Address

Page

Fault

Exception

Load page

from disk

Update PT entry

Retry

What happens when …

XX Jan 2022 SE 317: Operating Systems 43

Instruction

Process Physical Address:

Scheduler

Page Fault

Handler

Operating System

Page

Table

MMU

Virtual

Address

So Far

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging

XX Jan 2022 SE 317: Operating Systems 44

Impact of caches on Operating Systems

• Indirect - dealing with cache effects

• Process scheduling

– Which and how many processes are active?

– Large memory footprints versus small ones?

– Priorities?

– Shared pages mapped into Virtual Address Space (VAS) of multiple
processes?

• Impact of thread scheduling on cache performance

– Rapid interleaving of threads (small quantum) may degrade cache
performance

• Increase Average Memory Access Time (AMAT)

• Designing OS data structures for cache performance

• Maintaining the correctness of various caches

– TLB consistency:

• With PT across context switches ?

• Across updates to the PT ?

XX Jan 2022 SE 317: Operating Systems 45

Working Set Model

XX Jan 2022 SE 317: Operating Systems 46

• As a program executes it transitions through a sequence

of “working sets” consisting of varying sized subsets of

the address space

Time

A
d
d
re

s
s
e
s

Cache Behavior under WS model

XX Jan 2022 SE 317: Operating Systems 47

• Amortized by fraction of time the WS is active

• Transitions from one WS to the next

• Capacity, Conflict, Compulsory misses

• Applicable to memory caches and pages. Others ?

Cache size

H
it
 R

a
te

0

1
New working set fits

Another model of Locality: Zipf

XX Jan 2022 SE 317: Operating Systems 48

• Likelihood of accessing item of rank 𝑟 is 1/𝑟𝛼

• Although rare to access items below the top few, there

are so many that it yields a “heavy tailed” distribution.

• Substantial value from even a tiny cache

• Substantial misses from even a very large one

0

0.2

0.4

0.6

0.8

1

0%

5%

10%

15%

20%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 E
s
ti

m
a
te

d
 H

it
 R

a
te

P
o

p
u

la
ri

ty

(%
 a

c
c
e
s
s
e
s
)

Rank

P access(rank) = 1/rank

pop a=1

Hit Rate(cache)

Demand Paging

XX Jan 2022 SE 317: Operating Systems 49

• Modern programs require a lot of physical memory
– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10% of their code

– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk

Caching

Illusion of Infinite Memory

XX Jan 2022 SE 317: Operating Systems 50

Virtual

Memory

(4GB)

∞

Page

Table
TLB

Physical Memory

(512MB)

Hard Disk

(500GB)

Illusion of Infinite Memory

XX Jan 2022 SE 317: Operating Systems 51

• Disk is larger than physical memory
– In-use virtual memory can be bigger than physical memory

– Combined memory of running processes much larger than

physical memory

• More programs fit into memory, allowing more concurrency

• Transparent Level of Indirection (page table)
– Supports flexible placement of physical data

• Data could be on disk or somewhere across network

– Variable location of data transparent to user program

• Performance issue, not correctness issue

Demand Paging is Caching

• So we must ask:

– What is block size?

• 1 page

– What is organization of this cache (i.e. direct-mapped, set-

associative, fully-associative)?

• Fully associative: arbitrary virtual→physical mapping

– How do we find a page in the cache when look for it?

• First check TLB, then page-table traversal

– What is page replacement policy? (i.e. LRU, Random…)

• This requires more explanation… (kind of like LRU)

– What happens on a miss?

• Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)

• Definitely write-back. Need dirty bit!

XX Jan 2022 SE 317: Operating Systems 52

What is in a Page Table Entry? (Review)

• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page

– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:

– Address in 10, 10, 12-bit offset format

– Intermediate page tables called “Directories”

XX Jan 2022 SE 317: Operating Systems 53

Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0

What is in a Page Table Entry? (Review)

 P: Present (same as “valid” bit in other architectures)

 W: Writeable

 U: User accessible

 PWT: Page write transparent: external cache write-through

 PCD: Page cache disabled (page cannot be cached)

 A: Accessed: page has been accessed recently

 D: Dirty (PTE only): page has been modified recently

 L: L=14MB page (directory only).

 Bottom 22 bits of virtual address serve as offset

XX Jan 2022 SE 317: Operating Systems 54

Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0

Demand Paging Mechanisms

• PTE helps us implement demand paging

– Valid  Page in memory, PTE points at physical page

– Not Valid  Page not in memory; use info in PTE to find it on disk

when necessary

• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS

• Resulting trap is a “Page Fault”

XX Jan 2022 SE 317: Operating Systems 55

Demand Paging Mechanisms

• What does OS do on a Page Fault?:

– Choose an old page to replace

– If old page modified (“𝐷 = 1”), write contents back to disk

– Change the old PTE and any cached TLB to be invalid

– Load new page into memory from disk

– Update page table entry, invalidate TLB for new entry

– Continue thread from original faulting location

• TLB for new page will be loaded when thread continued!

– While pulling pages off disk for one process, OS runs another

process from ready queue

• Suspended process sits on wait queue

XX Jan 2022 SE 317: Operating Systems 56

Some follow-up questions

• During a page fault, where does the OS get a free frame?

– Keeps a free list

– Unix runs a “reaper” if memory gets too full

– As a last resort, evict a dirty page first

• How can we organize these mechanisms?

– Work on the replacement policy

• How many page frames per process?

– Like thread scheduling, need to “schedule” memory resources:

• Utilization? Fairness? Priority?

– allocation of disk paging bandwidth

XX Jan 2022 SE 317: Operating Systems 57

Demand Paging Cost Model
• Demand Paging is like caching, so compute Effective Access Time

– 𝐸𝐴𝑇 = 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 × 𝐻𝑖𝑡 𝑇𝑖𝑚𝑒 + 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 × 𝑀𝑖𝑠𝑠 𝑇𝑖𝑚𝑒

– 𝐸𝐴𝑇 = 𝐻𝑖𝑡 𝑇𝑖𝑚𝑒 + 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 × 𝑀𝑖𝑠𝑠 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Example:

• Memory access time = 200𝑛𝑠

• Average page-fault service time = 8𝑚𝑠

• Let 𝑝 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑖𝑠𝑠, 1 − 𝑝 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑦 𝑜𝑓 ℎ𝑖𝑡

• We compute 𝐸𝐴𝑇 as follows:

 𝐸𝐴𝑇 = 200𝑛𝑠 + 𝑝 × 8𝑚𝑠

 = 200𝑛𝑠 + 𝑝 × 8,000,000𝑛𝑠

• If one access out of 1,000 causes a page fault, 𝐸𝐴𝑇 = 8.2𝜇𝑠:

– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?

– 200𝑛𝑠 × 1.1 < 𝐸𝐴𝑇 ⇒ 𝑝 < 2.5 𝑥 10−6 (About 1 page fault in 400,000!)

XX Jan 2022 SE 317: Operating Systems 58

Compulsory Misses

• Pages that have never

been paged into memory

before

• How might we remove

these misses?

– Prefetching: loading them

into memory before needed

– Need to predict future

somehow!

Capacity Misses

• Not enough memory.

Must somehow increase

size.

• How?

– One option: Increase

amount of DRAM (not

quick fix!)

– Another option: If multiple

processes in memory:

adjust percentage of

memory allocated to each

one!

XX Jan 2022 SE 317: Operating Systems 59

What Factors Lead to Misses?

Conflict Misses

• Technically, conflict

misses don’t exist in

virtual memory, since it is

a “fully-associative” cache

Policy Misses

• Caused when pages

were in memory, but

kicked out prematurely

because of the

replacement policy

• How to fix? Better

replacement policy

XX Jan 2022 SE 317: Operating Systems 60

What Factors Lead to Misses?

Conclusion

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging

25 Jan 2026 SE 317: Operating Systems 61

	Default Section
	Slide 1: Caching Basics and Demand Paging 25 January 2026 Lecture 13
	Slide 2: Concept Review

	Caching Concepts
	Slide 3: Topics for Today
	Slide 4: Caching Concept
	Slide 5: In Machine Structures
	Slide 6: Why Bother with Caching?
	Slide 7: Another Reason for Caching
	Slide 8: Why Does Caching Help? Locality!
	Slide 9: Why Does Caching Help? Locality!
	Slide 10: Memory Hierarchy
	Slide 11: Sources of Cache Misses
	Slide 12: Sources of Cache Misses
	Slide 13: How is a Block found in a Cache?
	Slide 14: Direct Mapped Cache
	Slide 15: Direct Mapped Cache
	Slide 16: Direct Mapped Cache
	Slide 17: Set Associative Cache
	Slide 18: Set Associative Cache
	Slide 19: Set Associative Cache
	Slide 20: Set Associative Cache
	Slide 21: Fully Associative Cache
	Slide 22: Where does a Block Get Placed in a Cache?
	Slide 23: Which block to replace on a miss?
	Slide 24: What happens on a write?

	Applying to Addresses
	Slide 25: So Far
	Slide 26: Caching Applied to Address Translation
	Slide 27: What Actually Happens on a TLB Miss?
	Slide 28: What Actually Happens on a TLB Miss?
	Slide 29: Transparent Exceptions: TLB/Page fault
	Slide 30: What happens on a Context Switch?
	Slide 31: What TLB organization makes sense?
	Slide 32: What TLB organization makes sense?
	Slide 33: TLB organization: include protection
	Slide 34: TLB organization: include protection
	Slide 35: Reducing translation time further
	Slide 36: Overlapping TLB & Cache Access
	Slide 37: Overlapping TLB & Cache Access: 4KB Cache
	Slide 38: Putting Everything Together: Address Translation
	Slide 39: Putting Everything Together: TLB
	Slide 40: Putting Everything Together: Cache
	Slide 41: What happens when …
	Slide 42: What happens when …
	Slide 43: What happens when …
	Slide 44: So Far
	Slide 45: Impact of caches on Operating Systems
	Slide 46: Working Set Model
	Slide 47: Cache Behavior under WS model
	Slide 48: Another model of Locality: Zipf
	Slide 49: Demand Paging
	Slide 50: Illusion of Infinite Memory
	Slide 51: Illusion of Infinite Memory
	Slide 52: Demand Paging is Caching
	Slide 53: What is in a Page Table Entry? (Review)
	Slide 54: What is in a Page Table Entry? (Review)
	Slide 55: Demand Paging Mechanisms
	Slide 56: Demand Paging Mechanisms
	Slide 57: Some follow-up questions
	Slide 58: Demand Paging Cost Model
	Slide 59: What Factors Lead to Misses?
	Slide 60: What Factors Lead to Misses?
	Slide 61: Conclusion

