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Concept Review
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Topics for Today

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging
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Caching Concept
• Cache: a repository for copies that can be accessed more 

quickly than the original

– Make frequent case fast and infrequent case less dominant

• Caching underlies many of the techniques that are used today 
to make computers fast

– Can cache: memory locations, address translations, pages, file 
blocks, file names, network routes, etc…

• Only good if:

– Frequent case frequent enough and

– Infrequent case not too expensive

• Important measure:

• Average Access time = 
(Hit Rate x Hit Time) +
(Miss Rate x Miss Time)
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In Machine Structures

• Average Access time =  (Hit Rate x HitTime) + (Miss Rate x MissTime)

• 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 +  𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 =  1

• 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 =  90% => Average Access Time = 19 𝑛𝑠

• 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 =  99% => Average Access Time = 10.9𝑛𝑠
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Why Bother with Caching?

25 Jan 2026 SE 317: Operating Systems 6

(Really Joy’s law)

Image source: https://images.vice.com/motherboard/content-images/contentimage/no-id/140364245678419.jpg



Another Reason for Caching
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• We can’t afford to translate on every access
– At least three DRAM accesses per actual DRAM access

– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make 
memory access faster than DRAM access?

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)



Why Does Caching Help? Locality!
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• Temporal Locality (Locality in Time):

– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):

– Move contiguous blocks to the upper levels 

0 2𝑛 − 1

Probability

of reference



Why Does Caching Help? Locality!
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• Temporal Locality (Locality in Time):

– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):

– Move contiguous blocks to the upper levels 

Upper level 

Memory

Block X

Lower level 

Memory

Block Y



Memory Hierarchy
• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology

– Provide access at speed offered by the fastest technology
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Compulsory

• Cold start or process 
migration, first 
reference: first access 
to a block

• “Cold” fact of life: not a 
whole lot you can do 
about it

• Note: If you are going 
to run “billions” of 
instruction, Compulsory 
Misses are insignificant

Capacity

• Cache cannot contain 

all blocks access by 

the program

• Solution: increase 

cache size
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Sources of Cache Misses
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Conflict (collision)

– Multiple memory locations 

mapped to the same cache 

location

– Solution 1: increase cache 

size

– Solution 2: increase 

associativity

Coherence

• Invalidation

• Other process (e.g., I/O) 

updates memory 
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Sources of Cache Misses
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How is a Block found in a Cache?
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Block Address Block Offset

Tag Index

• Index Used to Lookup Candidates in Cache

– Index identifies the set (may be >1 in an associative cache)

• Tag used to identify actual copy

– If no candidates match, then declare cache miss

• Block is minimum quantum of caching

– Data select field used to select data within block

– Many caching applications don’t have data select field

Data

Select

Set

Select



Direct Mapped Cache

• Direct Mapped 2𝑁 

byte cache:
– The uppermost 

(32 −  𝑁) bits are 

always the Cache 

Tag

– The lowest 𝑀 bits 

are the Byte Select 

(𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 =  2𝑀)

• Example: 1 𝐾𝐵 

Direct Mapped 

Cache with 32 𝐵 

Blocks
– Index chooses 

potential block

– Tag checked to 

verify block

– Byte select chooses 

byte within block

25 Jan 2026 SE 317: Operating Systems 14



Direct Mapped Cache
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Cache Data

Byte 31 … Byte 1 Byte0 0

Byte 63 … Byte 33 Byte 32 1

2

3

…

Byte 1023 … Byte 993 Byte 992 31

Cache tag Cache Index Byte Select

31 9 4 0

Cache TagValid Bit



Direct Mapped Cache
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Cache Data

Byte 31 … Byte 1 Byte0 0

Byte 63 … Byte 33 Byte 32 1

2

3

…

Byte 1023 … Byte 993 Byte 992 31

Cache tag Cache Index Byte Select

31 9 4 0

Cache Tag

0x50

Valid Bit

Ex: 0x50 Ex: 0x01 Ex: 0x00



Set Associative Cache

17

• 𝑁-way set associative: 𝑁 entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Cache tag Cache Index Byte Select

31 8 4 0

Cache Data

Cache Block 0

Cache TagValid Cache Data

Cache Block 0

Cache Tag Valid

Compare CompareAND MuxSel1 Sel0
01

OR

Hit! Cache Block25 Jan 2026



Set Associative Cache
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• 𝑁-way set associative: 𝑁 entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Cache tag Cache Index Byte Select

31 8 4 0

Cache Data

Cache Block 0

Cache TagValid Cache Data

Cache Block 0

Cache Tag Valid

Compare CompareAND MuxSel1 Sel0
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OR
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Set Associative Cache
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• 𝑁-way set associative: 𝑁 entries per Cache Index
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Set Associative Cache
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• 𝑁-way set associative: 𝑁 entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result
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Fully Associative Cache
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• Fully Associative: Every block can hold any line
– Address does not include a cache index

– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators

– Still have byte select to choose from within block

Cache Data

Byte 31 … Byte 1 Byte0

Byte 63 … Byte 33 Byte 32

ValidCache Tag

Cache tag Byte Select

31 4 0

=

=

=

=

Ex: 0x01



Where does a Block Get Placed in a Cache?

• Example: Block 12 placed in 8 block cache
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Block

number: 1111111111222222222233
01234567890123456789012345678901

01234567

Direct mapped: 

Block 12 can go 

only into block 4 

(12 mod 8)

01234567

Set associative:

Block 12 can go 

anywhere in set 0 

(12 mod 4)

0 1 2 3Set:

01234567

Fully associative:

Block 12 can go 

anywhere



Which block to replace on a miss?

• Easy for Direct Mapped: Only one possibility

• Set Associative or Fully Associative:
– Random

– LRU (Least Recently Used)

(These are old benchmark cache miss rates)
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2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%



Write Through

• The information is written 
to both the block in the 
cache and to the block in 
the lower-level memory

•  
– Read misses cannot result 

in writes

•  
– Processor held up on 

writes unless writes 
buffered

Write Back

• The information is written only 
to the block in the cache. 
– Modified cache block is written 

to main memory only when it is 
replaced

– Question: Is block clean or dirty?

•  
– repeated writes not sent to 

DRAM

– processor not held up on writes

•  
– More complex

– Read miss may require 
writeback of dirty data
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What happens on a write?



So Far

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging
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Caching Applied to Address Translation

XX Jan 2022 SE 317: Operating Systems 26

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since 

accesses sequential)

– Stack accesses have definite locality of reference

– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

TLBVirtual

Address
Cached?

Y

N

Translate

(MMU)

Physical

Address

Data read or write (untranslated)



Hardware traversed page 
tables:

• On TLB miss, hardware 

in MMU looks at current 

page table to fill TLB 

(may walk multiple levels)

– If PTE valid, hardware fills 

TLB and processor never 

knows

– If PTE marked as invalid, 

causes Page Fault, after 

which kernel decides what 

to do afterwards

Software traversed Page 
tables (like MIPS)

• On TLB miss, processor 

receives TLB fault

• Kernel traverses page 

table to find PTE

– If PTE valid, fills TLB and 

returns from fault

– If PTE marked as invalid, 

internally calls Page Fault 

handler
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What Actually Happens on a TLB Miss?



What Actually Happens on a TLB Miss?

• Most chip sets provide hardware traversal

– Modern operating systems tend to have more 

TLB faults since they use translation for many 

things

• Examples: 

– Shared segments

– User-level portions of an operating system
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Transparent Exceptions: TLB/Page fault

• How to transparently restart faulting instructions?

– (Consider load or store that gets TLB or Page fault)

– Could we just skip faulting instruction? 

• No: need to perform load or store after reconnecting physical 

page

• Hardware must help out by saving:

– Faulting instruction and partial state 

• Need to know which instruction caused fault 

• Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread

• Save/restore registers, stack, etc

• What if an instruction has side-effects?
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What happens on a Context Switch?

• Need to do something, since TLBs map virtual addresses to 
physical addresses

– Address Space just changed, so TLB entries no longer valid!

• What can we do?

– Invalidate TLB: simple but might be expensive

• What if switching frequently between processes?

– Include ProcessID in TLB

• This is an architectural solution: needs hardware

• What if translation tables change?

– For example, to move page from memory to disk or vice versa…

– Must invalidate TLB entry!

• Otherwise, might think that page is still in memory!

– Called “TLB Consistency”
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What TLB organization makes sense?

• Needs to be really fast

– Critical path of memory access 

• In simplest view: before the cache

• Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity

• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!

– Thus the cost of Conflict (Miss Time) is much higher than slightly 

increased cost of access (Hit Time)
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TLB Cache



What TLB organization makes sense?

• Thrashing: Continuous conflicts between 

accesses

– What if use low order bits of page as index into TLB?

• First page of code, data, stack may map to same entry

• Need 3-way associativity at least?

– What if use high order bits as index?

• TLB mostly unused for small programs
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TLB Cache



TLB organization: include protection

• How big does TLB actually have to be?

– Usually small: 128-512 entries

– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache

– Lookup is by Virtual Address

– Returns Physical Address + other info

• What happens when fully-associative is too slow?

– Put a small (4-16 entry) direct-mapped cache in front

– Called a “TLB Slice”
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TLB organization: include protection

• Example for MIPS R3000:
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Virtual

Address

Physical

Address
Dirty? Ref Valid Access ASID

0xFA00 0x0003 Y N Y R/W 34

0x0040 0x0010 N Y Y R 0

0x0041 0x0011 N Y Y R 0



Reducing translation time further

• As described, TLB lookup is in serial with cache lookup:
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Virtual Address

|-- 10 bits --|

Virtual Page Number Offset

TLB Lookup

V Access Rights PA

Physical Page Number Offset

|-- 10 bits --|

Physical Address

Machines with TLBs go one step further:

• They overlap TLB lookup with cache 

access.

• Works because offset available early



Overlapping TLB & Cache Access
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• Main idea: 

– Offset in virtual address exactly covers the “cache 

index” and “byte select”

– Thus can select the cached byte(s) in parallel to 

perform address translation  

Virtual Address: Virtual Page Number Offset

Physical Address: Tag/Page Number Index Byte



Overlapping TLB & Cache Access: 4KB Cache
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• What if cache size is increased to 8KB?

– Overlap not complete

– Need to do something else.  See מבנה המחשב

• Another option: Virtual Caches

– Tags in cache are virtual addresses

– Translation only happens on cache misses

TLB

Cache 1K

4B
32

20 bits 10 bits 2b

Page # Disp 00

Associative

Lookup
Index

Hit/Miss

Frame#
= Hit/Miss

Data

Frame#



Putting Everything Together: Address Translation
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Virtual Address

Virtual P1 Index Virtual P2 Index Offset

PageTablePtr

Page

Table

(1st L)

Page

Table

(2nd L) Physical Address

Physical

Page #

Offset

Physical

Memory



Putting Everything Together: TLB
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Virtual Address

Virtual P1 Index Virtual P2 Index Offset

PageTablePtr

Page

Table

(1st L)

Page

Table

(2nd L) Physical Address

Physical

Page #

Offset

Physical

Memory

TLB:



Putting Everything Together: Cache
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Virtual Address

Virtual P1 Index Virtual P2 Index Offset

PageTablePtr

Page

Table

(1st L)

Page

Table

(2nd L) Physical Address

Physical

Page #

Offset

Physical

Memory

TLB:

Tag Index Byte

Tag Block
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What happens when …

XX Jan 2022 SE 317: Operating Systems 41

Instruction

Process

MMU
Page 

Table

Physical Address:Virtual

Address
Page #

Frame#

Offset



What happens when …
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Instruction

Process Physical Address:

Scheduler

Page Fault

Handler

Operating System

Page 

Table

MMU

Virtual

Address

Page 

Fault

Exception

Load page 

from disk

Update PT entry

Retry



What happens when …
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Instruction

Process Physical Address:

Scheduler

Page Fault

Handler

Operating System

Page 

Table

MMU

Virtual

Address



So Far

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging
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Impact of caches on Operating Systems

• Indirect - dealing with cache effects

• Process scheduling

– Which and how many processes are active?

– Large memory footprints versus small ones?

– Priorities?

– Shared pages mapped into Virtual Address Space (VAS) of multiple 
processes?

• Impact of thread scheduling on cache performance

– Rapid interleaving of threads (small quantum) may degrade cache 
performance

• Increase Average Memory Access Time (AMAT)

• Designing OS data structures for cache performance

• Maintaining the correctness of various caches

– TLB consistency:

• With PT across context switches ?

• Across updates to the PT ?
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Working Set Model
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• As a program executes it transitions through a sequence 

of “working sets” consisting of varying sized subsets of 

the address space

Time
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s



Cache Behavior under WS model
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• Amortized by fraction of time the WS is active

• Transitions from one WS to the next

• Capacity, Conflict, Compulsory misses

• Applicable to memory caches and pages.  Others ?

Cache size

H
it
 R

a
te

0

1
New working set fits



Another model of Locality: Zipf
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• Likelihood of accessing item of rank 𝑟 is 1/𝑟𝛼

• Although rare to access items below the top few, there 

are so many that it yields a “heavy tailed” distribution.

• Substantial value from even a tiny cache

• Substantial misses from even a very large one
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Demand Paging
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• Modern programs require a lot of physical memory
– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10% of their code

– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk

Caching



Illusion of Infinite Memory
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Virtual 

Memory 

(4GB)

∞

Page 

Table
TLB

Physical Memory

(512MB)

Hard Disk

(500GB)



Illusion of Infinite Memory
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• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory

– Combined memory of running processes much larger than 

physical memory

• More programs fit into memory, allowing more concurrency 

• Transparent Level of Indirection (page table) 
– Supports flexible placement of physical data

• Data could be on disk or somewhere across network

– Variable location of data transparent to user program

• Performance issue, not correctness issue



Demand Paging is Caching

• So we must ask:

– What is block size?

• 1 page

– What is organization of this cache (i.e. direct-mapped, set-

associative, fully-associative)?

• Fully associative: arbitrary virtual→physical mapping

– How do we find a page in the cache when look for it?

• First check TLB, then page-table traversal

– What is page replacement policy? (i.e. LRU, Random…)

• This requires more explanation… (kind of like LRU)

– What happens on a miss?

• Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)

• Definitely write-back.  Need dirty bit!
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What is in a Page Table Entry? (Review)

• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page

– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:

– Address in 10, 10, 12-bit offset format

– Intermediate page tables called “Directories”
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Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0



What is in a Page Table Entry? (Review)

  P: Present (same as “valid” bit in other architectures) 

  W: Writeable

  U: User accessible

  PWT: Page write transparent: external cache write-through

  PCD: Page cache disabled (page cannot be cached)

  A: Accessed: page has been accessed recently

  D: Dirty (PTE only): page has been modified recently

  L: L=14MB page (directory only).

  Bottom 22 bits of virtual address serve as offset
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Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0



Demand Paging Mechanisms

• PTE helps us implement demand paging

– Valid  Page in memory, PTE points at physical page

– Not Valid  Page not in memory; use info in PTE to find it on disk 

when necessary

• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS

• Resulting trap is a “Page Fault”
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Demand Paging Mechanisms

• What does OS do on a Page Fault?:

– Choose an old page to replace 

– If old page modified (“𝐷 = 1”), write contents back to disk

– Change the old PTE and any cached TLB to be invalid

– Load new page into memory from disk

– Update page table entry, invalidate TLB for new entry

– Continue thread from original faulting location

• TLB for new page will be loaded when thread continued!

– While pulling pages off disk for one process, OS runs another 

process from ready queue

• Suspended process sits on wait queue
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Some follow-up questions

• During a page fault, where does the OS get a free frame?

– Keeps a free list

– Unix runs a “reaper” if memory gets too full

– As a last resort, evict a dirty page first

• How can we organize these mechanisms?

– Work on the replacement policy

• How many page frames per process?

– Like thread scheduling, need to “schedule” memory resources:

• Utilization?  Fairness? Priority?

– allocation of disk paging bandwidth
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Demand Paging Cost Model
• Demand Paging is like caching, so compute Effective Access Time

– 𝐸𝐴𝑇 = 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 × 𝐻𝑖𝑡 𝑇𝑖𝑚𝑒 + 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 × 𝑀𝑖𝑠𝑠 𝑇𝑖𝑚𝑒

– 𝐸𝐴𝑇 = 𝐻𝑖𝑡 𝑇𝑖𝑚𝑒 + 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 × 𝑀𝑖𝑠𝑠 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Example:

• Memory access time = 200𝑛𝑠

• Average page-fault service time = 8𝑚𝑠

• Let 𝑝 =  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑚𝑖𝑠𝑠, 1 − 𝑝 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑦 𝑜𝑓 ℎ𝑖𝑡

• We compute 𝐸𝐴𝑇 as follows:

  𝐸𝐴𝑇 = 200𝑛𝑠 + 𝑝 × 8𝑚𝑠

         = 200𝑛𝑠 + 𝑝 ×  8,000,000𝑛𝑠

• If one access out of 1,000 causes a page fault, 𝐸𝐴𝑇 = 8.2𝜇𝑠:

– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?

– 200𝑛𝑠 × 1.1 < 𝐸𝐴𝑇 ⇒  𝑝 < 2.5 𝑥 10−6 (About 1 page fault in 400,000!)
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Compulsory Misses

• Pages that have never 

been paged into memory 

before

• How might we remove 

these misses?

– Prefetching: loading them 

into memory before needed

– Need to predict future 

somehow!

Capacity Misses

• Not enough memory. 

Must somehow increase 

size.

• How?

– One option: Increase 

amount of DRAM (not 

quick fix!)

– Another option: If multiple 

processes in memory: 

adjust percentage of 

memory allocated to each 

one!
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Conflict Misses

• Technically, conflict 

misses don’t exist in 

virtual memory, since it is 

a “fully-associative” cache

Policy Misses

• Caused when pages 

were in memory, but 

kicked out prematurely 

because of the 

replacement policy

• How to fix? Better 

replacement policy
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Conclusion

• Caching Basics

• Caching on Address Translations (TLB)

• Demand Paging
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