File Systems

18 January 2026
Lecture 12

Slides adapted from John Kubiatowicz (UC Berkeley)

18 Jan 2026 SE 317: Operating Systems

Concept Review

Fragmentation | |
Int Page Table Valid/Invalid
e Internal _
. External Entry bit
Multi-level
Page Page table hage table

18 Jan 2026

SE 317: Operating Systems

Topics for Today

* File Systems
— Introduction to File Systems
— Very simply file system
— FAT
— Inodes
— Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems

Building a File System

* File System: Layer of OS that transforms block
iInterface of disks (or other block devices) into
Files, Directories, etc.

— File System Components
“jis » Disk Management: collecting disk blocks

into files
- Naming: Interface to find files by name, e
not by blocks

6 Protection: Layers to keep data secure

 Reliability/Durability: Keeping of files
durable despite crashes, media failures,
attacks, etc

18 Jan 2026 SE 317: Operating Systems 4

User vs. System View of a File

User’s view: System’s View:
 Durable Data » System call interface:
Structures — Collection of Bytes (UNIX)

— Doesn’t matter to system
what kind of data structures
you want to store on disk!

* |nside OS:

— Collection of blocks (a
block is a logical transfer
unit, while a sector is the
physical transfer unit)

— Block size > sector size; in
UNIX, block size is 4KB

18 Jan 2026 SE 317: Operating Systems 5

Translating from User to System View

What happens if user says: Give me bytes 2-127
— Fetch block corresponding to those bytes
— Return just the correct portion of the block

What about: Write bytes 2-127
— Fetch block, Modify portion, Write out Block

Everything inside File System is in whole size blocks

— For example, getc (), putc () = buffers something like 4096
bytes, even if interface is one byte at a time

From now on, file is a collection of blocks

File
System

18 Jan 2026 SE 317: Operating Systems

S0 you are going to design a file system ...

What factors are critical to the design choices?

Durable data store = It's all on disk

NS

Disk Performance!

Maximize sequential access, minimize seeks

NS

Open before Read/Write

Can perform protection checks and look up where the actual file
resource are, in advance

18 Jan 2026 SE 317: Operating Systems

S0 you are going to design a file system ...

Size is determined as files are used

Can write (or read zeros) to Start small and grow, need to
expand the file make room

NS

Organize into directories

What data structure (on disk) do we use for that?

NS

Need to allocate and free blocks

Keep access efficient

18 Jan 2026 SE 317: Operating Systems

Defragmenting

*: Disk Defragmenter

Fle Action View Help

£
Yolume Session Status Fle Systern Capacity Free Space %0 Free Space
I1BM_PRELO... Defragmentin... MNTFS 33.32 G5B : O

Estimated disk usage before defragrmentation:

Estimated disk usage after defragmentation:

| FaLse || Stop |

B Fragmented fles B Contiguous files B Unmovable fles U Free space

IBM_PRELOAD (C:) Defragmenting... 49% Compactng Files [0eeiicin]

18 Jan 2026 SE 317: Operating Systems

Image source: http://blog.shane-smith.com/blog:116

Disk Management Policies

« Basic entities on a disk:
— File: User-visible group of blocks arranged sequentially in logical
space
— Directory: user-visible index mapping names to files

» Access disk as linear array of sectors.

Two Options:
1. Identify sectors as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.
2. Logical Block Addressing (LBA). Every sector has integer
address from zero up to max number of sectors.

« Controller translates from address=physical position
— First case: OS/BIOS must deal with bad sectors
— Second case: Hardware shields OS from structure of disk

18 Jan 2026 SE 317: Operating Systems

10

Disk Management Policies

 Need way to track free + Need a way to

disk blocks structure files: File
— Link free blocks Header
together = too slow — Track which blocks
today belong at which offsets
— Use bitmap to within the logical file
represent free space structure
on disk

— Optimize placement of
files’ disk blocks to
match access and
usage patterns

18 Jan 2026 SE 317: Operating Systems 11

Components of a File System

File Path
fFiIe Index A
_ N Structure

Directory File Data

Structure Number \Blocks
\)

K @
18 Jan 2026 SE 317: Operating Systems 12

Components of a file system

* Open performs name resolution

— Translates pathname into a “file number”
 Used as an “index” to locate the blocks

— Creates a file descriptor in PCB within kernel

— Returns a “handle” (another int) to user process
 Read, Write, Seek, and Sync operate on handle

— Mapped to descriptor and to blocks

File Name __Directory File Number Index __ Storage
Offset Offset Structure Block

18 Jan 2026 SE 317: Operating Systems 13

Directories

v A * This PC * Documents * External Course Materials > Distributed Systems Concepts and Design
Distributed Systems Concepts and Design MName Date modified Type Size
CDK Slides CDK Slides 15-May-15 2:48 PM File folder
cdkslidesG cdkslidesG 15-May-15 2:48 PM File folder
cdkslides) cdkslides) 15-May-15 2:48 PM File folder
Figures Figures 15-May-15 2:48 PM File folder
Supplementary Material Supplementary Material 15-May-15 2:48 PM File folder
Chapter12 ; cdkslidesG.zip 10-Jan-10 3:03 PM Compressed (zipped) Folder 747 KB
Chapter19 ; cdkslides).zip 10-Jan-10 3:03 PM Compressed (zipped) Folder 1,258 KB
Chapter20
* cdkslidesG.zip
¢ cdkslides).zip
Distributed Systems Principles and Paradigms
GWU Computer Netwarks Course
Handbook of Applied Cryptography
18 Jan 2026 SE 317: Operating Systems 14

Directory

» Basically a hierarchical structure
Each directory entry is a collection of
— Files

— Directories
* A link to another entries

Each has a name and attributes
— Files have data

Links (hard links) make it a DAG, not just a tree
— Soft links (aliases) are another name for an entry

=~ sdcard 2013-12-10 23:51 Irwoocrwocrwex -= Smint/sdcard

18 Jan 2026 SE 317: Operating Systems 15

/0O & Storage Levels

Application/Service
High Level |/O | Streams

Low Level |/O | Handles

Syscalls Registers #4 file handle
Data
_ Blocks
File System Descriptors
_ Commands and Data Transfers
/O Driver Disks, Flash, Controllers, DMA

>
Directory

18 Jan 2026 SE 317: Operating Systems 16

File

« Named permanent storage _ Data
: File Handle Blocks
Contains
. File Descriptor
Data FileObject (inode)

— Blocks on disk somewhere
« Metadata (Attributes)

— >
* Owner, size, last opened, ... W

« Access rights
- R, W, X
— Owner, Group, Other (in Unix systems)
— Access control list in Windows system

Position

18 Jan 2026 SE 317: Operating Systems 17

File Attributes

General Security Details Previous Versions

ﬁ}; info.b

Type offile: THT File (td)

Opens with: “f' Motepad++: afree (GNU Change...
Location: Chlsers\Michael\Desktop

Size: 109 bytes (109 bytes)

Size ondisk O bytes

Created: Today, May 01, 2017, 4 hours ago

Modified: Today. May 01, 2017, 4 hours ago

Accessed: Today, May 01, 2017, 4 hours ago

Attributes: [|Read-only []Hidden Advanced...

18 Jan 2026 OK cancel SE 317: Opera

Advanced Attributes

L

Choose the settings you want for this folder.

File attributes

File is ready for archiving

Compress or Encrypt attributes

[] Compress contents to save disk space

|:| Encrypt contents to secure data

Allow this file to hawve contents indexed in addition to file

Details

File Attributes

& info.txt Properties

General Security Details Previous Versions

Objectname: Chlsers\Michael\Desktophinfo.txt

GFCIL.IFJ ar user names:

£R SYSTEM

a Michael (MOWViMichael)

& Michael-Asp (NOV\Michael-Asp)
SR Administrators (NOV\Administrators)

To change permissions, click Edit

Edit...

Permissions for SYSTEM Allow

Deny

Full control
Modify

Read & execute
Read

Write

Special permissions

For special permissions or advanced settings,
click Advanced.

18 Jan 2026 SE 317:@perating Systems

Advanced

Apply

19

File Metadata

—

| alice_promo.mp4 Properties

General Security Details Previous Versions

> & alice_promo.mp4 Properties

General Security Details Previous Versions

Property
Description
Title
Subtitle
Rating
Tags
Comments
Video
Length
Frame width
Frame height
Data rate
Total bitrate
Frame rate

Audio
Bit rate
Channels

Media

Audio sample rate

Value

00:03:59

352

288

245kbps
364kbps

29 framesfsecond

118kbps
2 (steren)
44 kHz

~ Property
Mood

Initial key

Protected
File
Mame
ltem type
Folder path
Size
Date created
Date modified
Attributes
Availability
Offline status
Shared with
Owner
Computer

Bemove Properies and Personal Information

18 Jan 2026

Ok Cancel

Beats-per-minute

Value

Part of set

Mo

alice_promo.mp4

MP4 File
Ch\Users\Michael\Documents\Extemn...
10.5MB

03-Jun-13 3:48 PM

03-Jun-13 3:56 PM

A

Available offline

Michael-Asp
MNOVIMichael
MOV (this PC)

Bemove Properies and Personal Information

SE 347: Opeg@ting Systems

oK Cancel 120

In-Memory File System Structures

. Directory
Structure

Open
. B
(File Name) .
| | . File Control
! Directory Structure : Block
|
User Space ' Kernel Memory ' Secondary Storage

* Open system call:
— Resolves file name, finds file control block (inode)
— Makes entries in per-process and system-wide tables
— Returns index (called “file handle”) in open-file table

18 Jan 2026 SE 317: Operating Systems 21

In-Memory File System Structures

I I
_— Index Data
| e ; Blocks
I I
Read (index)+ !
| |
I I
| Per-Process gystem-wide J_. File Control
| .
1 Open-File table gpen-File tables Block
| |
User Space ' Kernel Memory ' Secondary Storage

» Read/write system calls:
— Use file handle to locate inode
— Perform appropriate reads or writes

18 Jan 2026 SE 317: Operating Systems 22

So Far

* File Systems

— Introduction to File Systems
— Very simply file system

— FAT
— Inodes

— Unix Fast File System (FFS)

18 Jan 2026

SE 317: Operating Systems

23

A simple File System: Ingredients

Blocks

* 4 KB Data space
» 64 total blocks

e Numbered 0-63

Metadata space Superblock

18 Jan 2026 SE 317: Operating Systems

Our blocks (4KB)

0 /7 8 15 16

23 24

31

32 39 40 47 48

55 56

63

18 Jan 2026 SE 317: Operating Systems

25

Data Region

Data Region

| | HEEEE |D|D|D|D|D|D DID] [D]DIDIDIDIDIDID] [D]D D|D|D|D|D|D|
15 16 23 24

Data Region

D|D|D|D|D DIDID] [D]DIDIDIDIDIDID] [D]DIDIDIDIDIDID] [DID D|D|D|D|D|D
39 40 47 48 55 56

Blocks 8-63 Rest will be
will be data 56 total metadata

18 Jan 2026 SE 317: Operating Systems 26

Inode region — What's an inode?

- Inodes

Data Region

D:I:_I_I_I_I_I_I_I_I_IDDDDDDDD [DID|D|D|D[DIDID] FI_I_I_I_I_I_I_IDDDDDDDD

15 16 23 24
Data Region

D|D|D|D|D DIDID] [D]D]D]DIDID]DID] [D]D]DIDIDIDID]D] [DID D|D|D|D|D|D

39 40

47 48 55 56

Data structure holds
metadata about file
e Size

« Owner

» Access rights
« Access/modify times

Typically stored in a
table

« Small, say 256 bytes

18 Jan 2026 SE 317: Operating Systems

27

Inode region

~ Inodes . Data Region
Dj:_ DIDIDIDIDID DID] [DID]DIDIDIDIDID] [D[D DIDIDIDIDID
15 16 23 24
Data Region

D|D|D|D|D DIDID] [D]D]D]DIDID]DID] [D]D]DIDIDIDID]D] [DID D|D|D|D|D|D

39 40

47 48

55 56

Use 5 blocks for
Inodes

Each 4KB block
holds 16 inodes

« 4096 / 256 = 16

Total 80 inodes

« Can’t have more
than 80 files or
directories

18 Jan 2026

SE 317: Operating Systems

28

Used/Free tracking

Inodes

Data Region

E_I_I_I_I_I_I_I_I_IDDDDDDDD [DID]DIDIDIDIDID] I_I_I_I_[_[_I_I_IDDDDDDDD

15 16
Data Region

23 24

DID[D]DID]D]DID] [D]DID]D]DID]DID] [D]D]DIDIDIDIDID] [D]D]DID D|D|D|D|

32 39 40

47 48

55 56

Need to track if an
inode is in used

Need to track if a
data block is in use

Use a bitmap for
each
e 0 ifinode/block is free

* 1 if inode/block in use
« Example: 1011 0011

18 Jan 2026

SE 317: Operating Systems

29

Used/Free tracking

, Inodes y Data Region

[_I_I_[_I_I_I_I_I_IDDDDDDDD [DIDIDIDIDIDDID] I_I_I_I_[_I_I_I_IDDDDDDDD
15 16 23 24

Data Region

DID[D]DID]D]DID] [D]DID]D]DID]DID] [D]D]DIDIDIDIDID] [D]D]DID D|D|D|D|
32 39 40 47 48 55 56

Block 1 tracks Block 2 tracks data
Inodes blocks

* Could really track 32K * Could really track 32K
Inodes, but let’'s be blocks, but let's be
simple simple

18 Jan 2026 SE 317: Operating Systems 30

Superblock

, Inodes . Data Region
IDID DIDIDIDIDID] [DID]DIDIDIDIDID] [DIDIDID DIDIDIDI
15 16 23 24
Data Region

|D D]DI|DJD]D]DID] [D]D]D]DID]D]D]D] [D]D]D]DIDIDID]D] [D]D]D]D D|D|D|D|

39 40

47 48

55 56

Block O contains basic
metadata

« Called Superblock

Contains info about the
file system

 How many inodes
 How many blocks
* Where things are
* |IDs, etc.

18 Jan 2026 SE 317: Operating Systems 31

Inode drill down

The Inode Table (Closeup)
" iblock 0 ' iblock 1 ' iblock 2 ' iblock 3 ' iblock 4
01|23][16]17|18[19}32|33[34/35/48|49|50[51/64/65|66/67
415|6|7|20[21]22(23[36/37|38|39|52/53|54/55|68|69|70|71

I-omap d-bmap exrrEeEE e T R e R
12113[14(1528/29[30[31/44145/46/4 71606116216 3[76[7 7|78/ 79

OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

Super

Each inode has an Can index the file by
implicit number taking i-number X
* i-number SIZGOf(InOde)

* To read inode 32, start at
byte 32 X sizeof(inode) =
8192

18 Jan 2026 SE 317: Operating Systems 32

What is a directory?

inum | reclen | strlen | name
5 12 2
2 12 3 ..
12 12 4 foo
13 12 4 bar
24 36 28 foobar_is_a_pretty_longname

« Contains records of files and directories inside
 i-number of the file/directory

 Reclen — how many bytes in the record

« Strlen — how many bytes in the name of the file/directory
 Name - the actual name (< reclen)

18 Jan 2026 SE 317: Operating Systems 33

So Far

* File Systems

— Introduction to File Systems
— Very simply file system

— FAT
— Inodes

— Unix Fast File System (FFS)

18 Jan 2026

SE 317: Operating Systems

34

Our first filesystem: FAT (File Allocation Table)

« Assume we have a

way to translate a path to

a “file number”
— i.e., a directory structure

« Disk Storage is a
collection of Blocks
— Just hold file data

Memory

« Ex: file read 31,(2,x)

— Index into FAT with file
number

-

— Follow linked list to block
— Read the block from disk

iInto mem

0:

31:

N-1:

FAT

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 2

18 Jan 2026 SE 317: Operating Systems

35

FAT Properties

File is collection of disk | File FAT Disk Blocks

blocks Number | 0:

FAT is linked list 1-1 with \ 5

blocks 31: < File 31, Block 0
I _

File Number is index of << File 31, Block 1

root <

of block list for the file

File offset (o = B:x)

Follow list to get block #

A

Unused blocks < FAT Free e

AA

free list

<€ File 31, Block 2

N-1: N-1:

18 Jan 2026 SE 317: Operating Systems 36

Writing a File Block

Disk Blocks

File 31, Block O

File 31, Block 1

Ex: file write(51,(3,y)) |File FAT

Number 0: 0:

 Grab blocks from free - -
. <€
list \31 B
* Linking them into file <
p:
Free <
<€
<€

N-1: N-1:

File 31, Block 3

File 31, Block 2

18 Jan 2026 SE 317: Operating Systems

37

Create a New File

° GFOW f||e by File FAT Disk Blocks
] Number 0: 0:
allocating free blocks \ | =
and linking them in 2t e T —
 Ex: Create file, write, < File 31, Block 1
write B
File 31, Block 3
File Number 2 —— 63: File 63, Block O
> File 31, Block 2
N-1: N-1:
18 Jan 2026 SE 317: Operating Systems 38

Create a New File

° GFOW f||e by File FAT Disk Blocks
] Number 0: 0:
allocating free blocks \ | |
and linking them in 2t > T —
 Ex: Create file, write, < File 31, Block 1
write < File 63, Block 1
Free
File 31, Block 3
File Number 2 —— 63: <€ File 63, Block O
> File 31, Block 2
N-1: N-1:
18 Jan 2026 SE 317: Operating Systems 39

FAT Assessment

Used in DOS, FAT Disk Blocks

Windows, USB drives, 0: 0:

o 31: < File 31, Block 0

Where is FAT stored? < File 31, Block 1

— On disk, restore on — < File 63, Block 1
boot, copy in memory

What happens when

you format a disk? Fio 31 Blook 3

— Zero the blocks, link up 63: | < File 63, Block 0
the FAT free-list

Simple > File 31, Block 2

N-1: N-1:

18 Jan 2026 SE 317: Operating Systems 40

FAT Assessment

Time to find block
(large files)? 0:

Free list usually just a
bit vector (here’s it's a
linked list).

Block layout for file? Free
Sequential Access?

Random Access”?
Fragmentation”?

Small files?
Big files?

31:

63:

N-1:

FAT

Disk Blocks

File 31,

Block 0

File 31,

Block 1

File 63,

Block 1

AA

File 31,

Block 3

File 63,

Block O

N-1:

File 31,

Block 2

18 Jan 2026 SE 317: Operating Systems

41

What about the Directory?

File 5268830 End of
“/lhome/mjmay” File
Name | . . Music Data First.txt
File 5268830 | 88026158 | 35002320 | 85200219 | Free Space | 66212871 | Free Space
Number
Next

« Essentially a file containing <file name:file_number>

mappings
* Free space for new entries

* In FAT: attributes kept in directory (!)
« Each directory a linked list of entries
* Where do you find root directory (“/")?

18 Jan 2026 SE 317: Operating Systems

42

Directory Structure

« How many disk accesses to resolve “/my/book/count”?

— Read in file header for root (fixed spot on disk)

— Read in first data block for root

» Table of file name/index pairs. Search linearly — ok since directories
typically very small

— Read in file header for “my”

— Read in first data block for “my”; search for “book”

— Read in file header for “book”

— Read in first data block for “book”: search for “count”
— Read in file header for “count”

« Current working directory: Per-address-space pointer to a

directory (inode) used for resolving file names

— Allows user to specify relative filename instead of absolute path
(say CWD="/my/book” can resolve “count”)

18 Jan 2026 SE 317: Operating Systems 43

Big FAT security holes

 FAT has no access rights
 FAT has no header in the file blocks

* Just gives an index into the FAT
— (file number = block number)

-

~
3”1
atl B

Don’t hurt
me!

18 Jan 2026 SE 317: Operating Systems 44

So Far

* File Systems

— Introduction to File Systems
— Very simply file system

— FAT
— Inodes

— Unix Fast File System (FFS)

18 Jan 2026

SE 317: Operating Systems

45

:
Characteristics of Files
 Most files are small 2
* Most of the space is occupied by the rare big ones ”g
12000 I | I] | I < §
| | | é 2000 = &
E 10000 e 2001 - ok
% e 2002 e
> 8000 42008 e - 2 5
@ ey 2004 e =
= 6000 [- 2
Q4000 [e S P
7)) ! i ' SN : =
R | i RN | =3
o 2000 [A BN N 7 e
O .I::w_*f”"";/ ’ | | I | ‘5\{_‘__;}“__{*‘_ iﬁg

0 8 128 2K 32K 512K 8M 128M :%7

File size (bytes, log scale, power-of-2 bins) v El

<

N
(@)

Figure 2: Histograms of files by size

Characteristics of Files

Most files are small

* Most of the space is occupied by the rare big ones

18 Figure 4: Histograms of bytes by containing file size

Used space per file system (MB)

1800 I I l l I l I

0

. . | | |
1600 |-t 2000 -
s s 1 Y 2001 -
1400 [g T
1200 [gL}im*ﬁmm”* """" 2003 -
00 f A0 2004 -

: : A 3 5 : 3
800 ,,,,,,,,, [[IV SRR S SR S SN (S Lo
= T T T " 1 5 T-% B 1 7 R a 1 ~—
! ! VARG U W RS ! :
' ' 1 ¢ ' ' . - [¢ " ' [
600 : : S ol Nl : :
b e Y T R it St T R -
: : 20 AN N SN :
' ' A l’ N PN "\.‘_‘7.-‘ ' | ' '
: : Tl -7 N : A R :
'""'_"T"_""'_"T"_"{"T"_'FT """ - Al il A N \"'_"7"_"’ '''''' T \-____‘_.____‘_I """""""" [—
: AR ' N o P :
: P AP | : : -~ P !
i Vi_z 1 1 IS —— =] . " 2 '
200 e R ,‘T":_"/'('_ T T T T T T TN T T T T T T T T T Tt Ty T LT T 1 TE
' e -~ ' ' ' ' ™ \ '

‘ . . : LS
]] | | | T

- *;\.‘:\‘-._--n_
R A

512 4K 3

2K 256K 2M 16M128M 1G 8G 64G
Containing file size (bytes, log scale, power-of-2 bins)

AGRAWAL, N., BoLosky, W. J., DOUCEUR, J. R., AND LorcH, J. R. 2007. A five-year study of file-system

47

metadata. In Proceedings of the 5th USENIX Conference on File and Storage Technologies, San

Jose, CA, 31-45.

Meet the Inode

Triple Double

Inode Array Inode Indirect Indirect Indirect Data
File Metadata Blocks Blocks Blocks Blocks
1
2
3
File 4
Number 5
6
7
8
9

Indirect Pointer

Double Indirect Pointer

Triple Indirect Pointer

18 Jan 2026 SE 317: Operating Systems 48

Unix Fast File System

* Original inode format appeared in BSD 4.1 (1981)
— Berkeley Standard Distribution Unix
— Similar structure for Linux ext2/3

* File Number is index into inode arrays

* Multi-level index structure
— Great for small and large files
— Asymmetric tree with fixed sized blocks

» Metadata associated with the file
— Rather than in the directory that points to it (FAT)

« UNIXFFS: BSD 4.2 (1983): Locality Heuristics

— Block group placement
— Reserve space

« Scalable directory structure

: https://en.wikipedia.org/w/index.php?curid=1193267 |

| Image Source

18 Jan 2026 SE 317: Operating Systems 49

File Attributes

Inode Array / Inode ;I;:g?llzct :?%Lijrzlc?t Indirect Data
File Metadata Blocks Blocks Blocks Blocks
User
| Group
E'Lerr 9 basic access control bits
| -UGO x RWX
Setuid bit

« EXxecute at owner permissions, rather than user
Getgid bit
« Execute at group’s permissions

12

Indirect Pointer

Double Indirect Pointer

Triple Indirect Pointer

=

18 Jan 2026 SE 317: Operating Systems

50

Data Storage

Triple Double
Inode Arra
. y Inode Indirect Indirect Indirect Data
Small files: File Metadata Blocks Blocks Blocks Blocks
c 1
1_2 pointers >
direct to 3
: data blocks 4
5
. 6
Direct 7
pointers: : .
9 @
4KB blocks 10 % 5000
= Enough 11 = 6000
. L 4000
for files up 12 /é 2000
Indirect Pointer AT e
to 48KB . . Ve 0O 8 128 2K 32K 512K 8M 128M
DOUble IndlreCt POlnter File size (bytes, log scale, power-of-2 bins)
Triple Indirect Pointer |~ Figure 2: Histograms of files by size
18 Jan 2026 SE 317: Operating Systems 51

Data Storage

: : Triple Double
Indllgegt tp:)lntedr§ K Inode Indirect Indirect Indirect Data
blomk 2 at SK 1]l File Metadata Blocks Blocks Blocks Blocks
oC analnlng % 1800 ———]
only pointers e 16001 R]
3 1400 : 2000 7 :
« 4KB blocks qwi‘ 1200 | j 3882 S —> -
1024 pointers | S ‘g0]
. o 600 [A . |
4 MB at (.(é- 400 b __________ // /77_\ \\ F—
Level 2 O i N
. 4GB at 3 512 4K 32K 256K 2M 16M128M 1G 8G 64G
Level 3 Containing file size (bytes, log scale, power-of-2 bins)
. 4TB at Figure 4: Histograms of bytes by containing file size
9
Level 4
10
11
12
Indirect Pointer
Double Indirect Pointer
Triple Indirect Pointer
18 Jan 2026 SE 317: Operating Systems 52

So Far

* File Systems

— Introduction to File Systems
— Very simply file system

— FAT
— |Inodes

— Unix Fast File System (FFS)

18 Jan 2026

SE 317: Operating Systems

53

UNIX BSD 4.2 (1983)

« Same as BSD 4.1 (same file header and triply
indirect blocks), except incorporated ideas from
Cray DEMOS:

— Uses bitmap allocation in place of freelist

— Attempt to allocate files contiguously

— 10% reserved disk space

— Skip-sector positioning (soon)

| By Clemens PFEIFFER - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1441453 |

18 Jan 2026 SE 317: Operating Systems

54

Problem 1: How big?

* When create a file, don’'t know how big it will
become (in UNIX, most writes are by appending)
— How much contiguous space do you allocate for a file?

— In BSD 4.2, just find some range of free blocks
« Put each new file at the front of different range

» To expand a file, you first try successive blocks in bitmap, then
choose new range of blocks

— Also in BSD 4.2: store files from same directory near
each other

* Fast File System (FFS)

— Allocation and placement policies for BSD 4.2

18 Jan 2026 SE 317: Operating Systems 55

Problem 2: Rotational Delay

* Missing blocks due to rotational delay
— Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! Need 1
revolution/block!

Track Buffer (holds complete track)

= | |

« Solution 1: Skip sector positioning (“interleaving”)

— Place the blocks from one file on every other block of a track: give
time for processing to overlap rotation
« Solution 2: Read ahead: Read next block right after first, even if
application hasn’t asked for it yet.
— This can be done by the OS (read ahead) - OR -
— By the disk itself (track buffers). Many disk controllers have internal
RAM that allows them to read a complete track

18 Jan 2026 SE 317: Operating Systems 56

Problem 2: Rotational Delay

* Important Aside: Modern disks and
controllers do many complex things “under

the covers”
— Track buffers, elevator algorithms, bad block
filtering

Track Buffer (holds complete track)

= | |

18 Jan 2026 SE 317: Operating Systems 57

Conclusion

* File Systems
— Introduction to File Systems
— Very simply file system
— FAT
— Inodes
— Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems

58

	Default Section
	Slide 1: File Systems 18 January 2026 Lecture 12
	Slide 2: Concept Review
	Slide 3: Topics for Today

	File Systems
	Slide 4: Building a File System
	Slide 5: User vs. System View of a File
	Slide 6: Translating from User to System View
	Slide 7: So you are going to design a file system …
	Slide 8: So you are going to design a file system …
	Slide 9: Defragmenting
	Slide 10: Disk Management Policies
	Slide 11: Disk Management Policies
	Slide 12: Components of a File System
	Slide 13: Components of a file system
	Slide 14: Directories
	Slide 15: Directory
	Slide 16: I/O & Storage Levels
	Slide 17: File
	Slide 18: File Attributes
	Slide 19: File Attributes
	Slide 20: File Metadata
	Slide 21: In-Memory File System Structures
	Slide 22: In-Memory File System Structures

	VSFS
	Slide 23: So Far
	Slide 24: A simple File System: Ingredients
	Slide 25: Our blocks (4KB)
	Slide 26: Data Region
	Slide 27: Inode region – What’s an inode?
	Slide 28: Inode region
	Slide 29: Used/Free tracking
	Slide 30: Used/Free tracking
	Slide 31: Superblock
	Slide 32: Inode drill down
	Slide 33: What is a directory?

	FAT
	Slide 34: So Far
	Slide 35: Our first filesystem: FAT (File Allocation Table)
	Slide 36: FAT Properties
	Slide 37: Writing a File Block
	Slide 38: Create a New File
	Slide 39: Create a New File
	Slide 40: FAT Assessment
	Slide 41: FAT Assessment
	Slide 42: What about the Directory?
	Slide 43: Directory Structure
	Slide 44: Big FAT security holes

	Inode
	Slide 45: So Far
	Slide 46: Characteristics of Files
	Slide 47: Characteristics of Files
	Slide 48: Meet the Inode
	Slide 49: Unix Fast File System
	Slide 50: File Attributes
	Slide 51: Data Storage
	Slide 52: Data Storage

	FFS
	Slide 53: So Far
	Slide 54: UNIX BSD 4.2 (1983)
	Slide 55: Problem 1: How big?
	Slide 56: Problem 2: Rotational Delay
	Slide 57: Problem 2: Rotational Delay
	Slide 58: Conclusion

