
18 Jan 2026 SE 317: Operating Systems 1

File Systems

18 January 2026

Lecture 12

Slides adapted from John Kubiatowicz (UC Berkeley)

Concept Review

Fragmentation

• Internal

• External

Page Table
Entry

Valid/Invalid
bit

Page Page table
Multi-level
page table

18 Jan 2026 SE 317: Operating Systems 2

Topics for Today

• File Systems

– Introduction to File Systems

– Very simply file system

– FAT

– Inodes

– Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems 3

Building a File System

• File System: Layer of OS that transforms block

interface of disks (or other block devices) into

Files, Directories, etc.

– File System Components

• Disk Management: collecting disk blocks

into files

• Naming: Interface to find files by name,

not by blocks

• Protection: Layers to keep data secure

• Reliability/Durability: Keeping of files

durable despite crashes, media failures,

attacks, etc

18 Jan 2026 SE 317: Operating Systems 4

User’s view:

• Durable Data

Structures

System’s View:

• System call interface:
– Collection of Bytes (UNIX)

– Doesn’t matter to system

what kind of data structures

you want to store on disk!

• Inside OS:
– Collection of blocks (a

block is a logical transfer

unit, while a sector is the

physical transfer unit)

– Block size  sector size; in

UNIX, block size is 4KB

18 Jan 2026 SE 317: Operating Systems 5

User vs. System View of a File

Translating from User to System View

• What happens if user says: Give me bytes 2-12?

– Fetch block corresponding to those bytes

– Return just the correct portion of the block

• What about: Write bytes 2-12?

– Fetch block, Modify portion, Write out Block

• Everything inside File System is in whole size blocks

– For example, getc(), putc()  buffers something like 4096

bytes, even if interface is one byte at a time

• From now on, file is a collection of blocks

18 Jan 2026 SE 317: Operating Systems 6

File

System

So you are going to design a file system …

Open before Read/Write

Can perform protection checks and look up where the actual file
resource are, in advance

Disk Performance!

Maximize sequential access, minimize seeks

What factors are critical to the design choices?

Durable data store → It’s all on disk

18 Jan 2026 SE 317: Operating Systems 7

So you are going to design a file system …

Need to allocate and free blocks

Keep access efficient

Organize into directories

What data structure (on disk) do we use for that?

Size is determined as files are used!

Can write (or read zeros) to
expand the file

Start small and grow, need to
make room

18 Jan 2026 SE 317: Operating Systems 8

Defragmenting

18 Jan 2026 SE 317: Operating Systems 9

Im
a

g
e

 s
o

u
rc

e
:
h

tt
p

:/
/b

lo
g

.s
h

a
n

e
-s

m
it
h

.c
o

m
/b

lo
g

:1
1
6

Disk Management Policies

• Basic entities on a disk:
– File: User-visible group of blocks arranged sequentially in logical

space

– Directory: user-visible index mapping names to files

• Access disk as linear array of sectors.

Two Options:
1. Identify sectors as vectors [cylinder, surface, sector].

Sort in cylinder-major order. Not used much anymore.

2. Logical Block Addressing (LBA). Every sector has integer

address from zero up to max number of sectors.

• Controller translates from address⇒physical position
– First case: OS/BIOS must deal with bad sectors

– Second case: Hardware shields OS from structure of disk

18 Jan 2026 SE 317: Operating Systems 10

Disk Management Policies

• Need way to track free

disk blocks
– Link free blocks

together ⇒ too slow

today

– Use bitmap to

represent free space

on disk

• Need a way to

structure files: File

Header
– Track which blocks

belong at which offsets

within the logical file

structure

– Optimize placement of

files’ disk blocks to

match access and

usage patterns

18 Jan 2026 SE 317: Operating Systems 11

Components of a File System

18 Jan 2026 SE 317: Operating Systems 12

File Path

Directory

Structure

File Index

Structure
File

Number

…

Data

Blocks

Components of a file system

18 Jan 2026 SE 317: Operating Systems 13

• Open performs name resolution

– Translates pathname into a “file number”

• Used as an “index” to locate the blocks

– Creates a file descriptor in PCB within kernel

– Returns a “handle” (another int) to user process

• Read, Write, Seek, and Sync operate on handle

– Mapped to descriptor and to blocks

File Name

Offset

File Number

Offset

Storage

Block

Directory Index

Structure

Directories

18 Jan 2026 SE 317: Operating Systems 14

Directory

• Basically a hierarchical structure

• Each directory entry is a collection of

– Files

– Directories

• A link to another entries

• Each has a name and attributes

– Files have data

• Links (hard links) make it a DAG, not just a tree

– Soft links (aliases) are another name for an entry

18 Jan 2026 SE 317: Operating Systems 15

I/O & Storage Levels

18 Jan 2026 SE 317: Operating Systems 16

I/O Driver

File System

High Level I/O

Low Level I/O

Syscalls

Application/Service

Streams

Handles

Registers

Descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA
…

Data

Blocks

Structure
Directory

#4 file handle

File

• Named permanent storage

Contains

• Data

– Blocks on disk somewhere

• Metadata (Attributes)

• Owner, size, last opened, …

• Access rights

– R, W, X

– Owner, Group, Other (in Unix systems)

– Access control list in Windows system

18 Jan 2026 SE 317: Operating Systems 17

…

Data

Blocks

Structure

File Handle

File Descriptor

 FileObject (inode)

 Position

File Attributes

18 Jan 2026 SE 317: Operating Systems 18

File Attributes

1918 Jan 2026 SE 317: Operating Systems

File Metadata

18 Jan 2026 SE 317: Operating Systems 20

In-Memory File System Structures

18 Jan 2026 SE 317: Operating Systems 21

• Open system call:

– Resolves file name, finds file control block (inode)

– Makes entries in per-process and system-wide tables

– Returns index (called “file handle”) in open-file table

User Space Kernel Memory Secondary Storage

Open
(File Name)

Directory Structure

Directory

Structure

File Control

Block

In-Memory File System Structures

18 Jan 2026 SE 317: Operating Systems 22

• Read/write system calls:

– Use file handle to locate inode

– Perform appropriate reads or writes

User Space Kernel Memory Secondary Storage

Read (index)

Per-Process

Open-File table

Data

Blocks

File Control

Block
System-wide

Open-File table

Index

So Far

• File Systems

– Introduction to File Systems

– Very simply file system

– FAT

– Inodes

– Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems 23

A simple File System: Ingredients

Blocks

• 4 KB

• 64 total blocks

• Numbered 0-63

Data space

Metadata space Superblock

18 Jan 2026 SE 317: Operating Systems 24

Our blocks (4KB)

18 Jan 2026 SE 317: Operating Systems 25

Data Region

18 Jan 2026 SE 317: Operating Systems 26

Blocks 8-63
will be data

56 total
Rest will be
metadata

Inode region – What’s an inode?

18 Jan 2026 SE 317: Operating Systems 27

Data structure holds
metadata about file

• Size

• Owner

• Access rights

• Access/modify times

Typically stored in a
table

• Small, say 256 bytes

Inode region

18 Jan 2026 SE 317: Operating Systems 28

Use 5 blocks for
inodes

Each 4KB block
holds 16 inodes

• 4096 / 256 = 16

Total 80 inodes

• Can’t have more
than 80 files or
directories

Used/Free tracking

18 Jan 2026 SE 317: Operating Systems 29

Need to track if an
inode is in used

Need to track if a
data block is in use

Use a bitmap for
each

• 0 if inode/block is free

• 1 if inode/block in use

• Example: 1011 0011

Used/Free tracking

18 Jan 2026 SE 317: Operating Systems 30

Block 1 tracks
inodes

• Could really track 32K
inodes, but let’s be
simple

Block 2 tracks data
blocks

• Could really track 32K
blocks, but let’s be
simple

Superblock

18 Jan 2026 SE 317: Operating Systems 31

Block 0 contains basic
metadata

• Called Superblock

Contains info about the
file system

• How many inodes

• How many blocks

• Where things are

• IDs, etc.

Inode drill down

18 Jan 2026 SE 317: Operating Systems 32

Each inode has an
implicit number

• i-number

Can index the file by
taking i-number X
sizeof(inode)

• To read inode 32, start at
byte 32 X sizeof(inode) =
8192

What is a directory?

18 Jan 2026 SE 317: Operating Systems 33

• Contains records of files and directories inside

• i-number of the file/directory

• Reclen – how many bytes in the record

• Strlen – how many bytes in the name of the file/directory

• Name – the actual name (≤ reclen)

So Far

• File Systems

– Introduction to File Systems

– Very simply file system

– FAT

– Inodes

– Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems 34

Our first filesystem: FAT (File Allocation Table)

• Assume we have a

way to translate a path to

a “file number”

– i.e., a directory structure

• Disk Storage is a

collection of Blocks

– Just hold file data

• Ex: file_read 31, 〈2, 𝑥〉

– Index into FAT with file

number

– Follow linked list to block

– Read the block from disk

into mem

18 Jan 2026 SE 317: Operating Systems 35

FAT Disk Blocks

0: 0:

31: File 31, Block 0

File 31, Block 1

File 31, Block 2

N-1: N-1:

Memory

FAT Properties
• File is collection of disk

blocks

• FAT is linked list 1-1 with

blocks

• File Number is index of

root

of block list for the file

• File offset (𝑜 = 𝐵: 𝑥)

• Follow list to get block #

• Unused blocks  FAT

free list

18 Jan 2026 SE 317: Operating Systems 36

FAT Disk Blocks

0: 0:

31: File 31, Block 0

File 31, Block 1

File 31, Block 2

N-1: N-1:

File

Number

Free

Writing a File Block
Ex: file_write(51, 〈3, 𝑦〉)

• Grab blocks from free

list

• Linking them into file

18 Jan 2026 SE 317: Operating Systems 37

FAT Disk Blocks

0: 0:

31: File 31, Block 0

File 31, Block 1

File 31, Block 3

File 31, Block 2

N-1: N-1:

File

Number

Free

Create a New File

• Grow file by

allocating free blocks

and linking them in

• Ex: Create file, write,

write

18 Jan 2026 SE 317: Operating Systems 38

FAT Disk Blocks

0: 0:

31: File 31, Block 0

File 31, Block 1

File 31, Block 3

63: File 63, Block 0

File 31, Block 2

N-1: N-1:

File

Number

Free

File Number 2

Create a New File

• Grow file by

allocating free blocks

and linking them in

• Ex: Create file, write,

write

18 Jan 2026 SE 317: Operating Systems 39

FAT Disk Blocks

0: 0:

31: File 31, Block 0

File 31, Block 1

File 63, Block 1

File 31, Block 3

63: File 63, Block 0

File 31, Block 2

N-1: N-1:

File

Number

Free

File Number 2

FAT Assessment

• Used in DOS,

Windows, USB drives,

…

• Where is FAT stored?

– On disk, restore on

boot, copy in memory

• What happens when

you format a disk?

– Zero the blocks, link up

the FAT free-list

• Simple

18 Jan 2026 SE 317: Operating Systems 40

FAT Disk Blocks

0: 0:

31: File 31, Block 0

File 31, Block 1

File 63, Block 1

File 31, Block 3

63: File 63, Block 0

File 31, Block 2

N-1: N-1:

Free

FAT Assessment
• Time to find block

(large files)?

• Free list usually just a
bit vector (here’s it’s a
linked list).

• Block layout for file?

• Sequential Access?

• Random Access?

• Fragmentation?

• Small files?

• Big files?

18 Jan 2026 SE 317: Operating Systems 41

FAT Disk Blocks

0: 0:

31: File 31, Block 0

File 31, Block 1

File 63, Block 1

File 31, Block 3

63: File 63, Block 0

File 31, Block 2

N-1: N-1:

Free

What about the Directory?

18 Jan 2026 SE 317: Operating Systems 42

File 5268830

“/home/mjmay”

End of

File

Name . .. Music Data

Free Space

First.txt

Free Space
File

Number
5268830 88026158 35002320 85200219 66212871

Next

• Essentially a file containing <file_name:file_number>
mappings

• Free space for new entries

• In FAT: attributes kept in directory (!)

• Each directory a linked list of entries

• Where do you find root directory (“/”)?

Directory Structure

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)

– Read in first data block for root

• Table of file name/index pairs. Search linearly – ok since directories

typically very small

– Read in file header for “my”

– Read in first data block for “my”; search for “book”

– Read in file header for “book”

– Read in first data block for “book”; search for “count”

– Read in file header for “count”

• Current working directory: Per-address-space pointer to a

directory (inode) used for resolving file names

– Allows user to specify relative filename instead of absolute path

(say CWD=“/my/book” can resolve “count”)

18 Jan 2026 SE 317: Operating Systems 43

Big FAT security holes

• FAT has no access rights

• FAT has no header in the file blocks

• Just gives an index into the FAT

– (file number = block number)

18 Jan 2026 SE 317: Operating Systems 44

Don’t hurt

me!

So Far

• File Systems

– Introduction to File Systems

– Very simply file system

– FAT

– Inodes

– Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems 45

Characteristics of Files

• Most files are small

• Most of the space is occupied by the rare big ones

18 Jan 2026 SE 317: Operating Systems 46

Characteristics of Files

• Most files are small

• Most of the space is occupied by the rare big ones

18 Jan 2026 SE 317: Operating Systems 47

Meet the Inode

18 Jan 2026 SE 317: Operating Systems 48

Inode Array

File

Number

Inode

File Metadata

1

2

3

4

5

6

7

8

9

10

11

12

Indirect Pointer

Double Indirect Pointer

Triple Indirect Pointer

Triple

Indirect

Blocks

Double

Indirect

Blocks

Indirect

Blocks

Data

Blocks

…
…

…

…
…

…

…
…

…
…

Unix Fast File System

• Original inode format appeared in BSD 4.1 (1981)

– Berkeley Standard Distribution Unix

– Similar structure for Linux ext2/3

• File Number is index into inode arrays

• Multi-level index structure

– Great for small and large files

– Asymmetric tree with fixed sized blocks

• Metadata associated with the file

– Rather than in the directory that points to it (FAT)

• UNIX FFS: BSD 4.2 (1983): Locality Heuristics

– Block group placement

– Reserve space

• Scalable directory structure

18 Jan 2026 SE 317: Operating Systems 49

Im
a
g
e
 S

o
u
rc

e
:

h
tt

p
s
:/

/e
n
.w

ik
ip

e
d
ia

.o
rg

/w
/i
n
d
e
x
.p

h
p
?
c
u
ri
d
=

1
1
9

3
2

6
7

File Attributes

18 Jan 2026 SE 317: Operating Systems 50

Inode Array

File

Number

Inode

File Metadata

1

2

3

4

5

6

7

8

9

10

11

12

Indirect Pointer

Double Indirect Pointer

Triple Indirect Pointer

Triple

Indirect

Blocks

Double

Indirect

Blocks

Indirect

Blocks

Data

Blocks

…
…

…

…
…

…

…
…

…
…

User

Group

9 basic access control bits

 - UGO × RWX
Setuid bit

• Execute at owner permissions, rather than user

Getgid bit

• Execute at group’s permissions

Data Storage

18 Jan 2026 SE 317: Operating Systems 51

Inode Array

File

Number

Inode

File Metadata

1

2

3

4

5

6

7

8

9

10

11

12

Indirect Pointer

Double Indirect Pointer

Triple Indirect Pointer

Triple

Indirect

Blocks

Double

Indirect

Blocks

Indirect

Blocks

Data

Blocks

…
…

…

…
…

…

…
…

…
…

Small files:

12 pointers

direct to

data blocks

Direct

pointers:

4KB blocks

➔ Enough

for files up

to 48KB

Data Storage

18 Jan 2026 SE 317: Operating Systems 52

Inode Array

File

Number

Inode

File Metadata

1

2

3

4

5

6

7

8

9

10

11

12

Indirect Pointer

Double Indirect Pointer

Triple Indirect Pointer

Triple

Indirect

Blocks

Double

Indirect

Blocks

Indirect

Blocks

Data

Blocks

…
…

…

…
…

…

…
…

…
…

Indirect pointers

• Point to a disk

block containing

only pointers

• 4KB blocks

➔1024 pointers

• 4 MB at

Level 2

• 4GB at

Level 3

• 4TB at

Level 4

So Far

• File Systems

– Introduction to File Systems

– Very simply file system

– FAT

– Inodes

– Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems 53

UNIX BSD 4.2 (1983)

• Same as BSD 4.1 (same file header and triply

indirect blocks), except incorporated ideas from

Cray DEMOS:

– Uses bitmap allocation in place of freelist

– Attempt to allocate files contiguously

– 10% reserved disk space

– Skip-sector positioning (soon)

18 Jan 2026 SE 317: Operating Systems 54

B
y
 C

le
m

e
n

s
 P

F
E

IF
F

E
R

 -
 O

w
n
 w

o
rk

,
C

C
 B

Y
 2

.5
,

h
tt

p
s
:/

/c
o
m

m
o
n
s
.w

ik
im

e
d
ia

.o
rg

/w
/i
n

d
e
x
.p

h
p
?
c
u
ri
d

=
1
4
4
1
4

5
3

Problem 1: How big?

• When create a file, don’t know how big it will

become (in UNIX, most writes are by appending)

– How much contiguous space do you allocate for a file?

– In BSD 4.2, just find some range of free blocks

• Put each new file at the front of different range

• To expand a file, you first try successive blocks in bitmap, then

choose new range of blocks

– Also in BSD 4.2: store files from same directory near

each other

• Fast File System (FFS)

– Allocation and placement policies for BSD 4.2

18 Jan 2026 SE 317: Operating Systems 55

• Missing blocks due to rotational delay
– Issue: Read one block, do processing, and read next block. In

meantime, disk has continued turning: missed next block! Need 1

revolution/block!

• Solution 1: Skip sector positioning (“interleaving”)

– Place the blocks from one file on every other block of a track: give

time for processing to overlap rotation

• Solution 2: Read ahead: Read next block right after first, even if

application hasn’t asked for it yet.
– This can be done by the OS (read ahead) - OR -

– By the disk itself (track buffers). Many disk controllers have internal

RAM that allows them to read a complete track

Problem 2: Rotational Delay

18 Jan 2026 SE 317: Operating Systems 56

Skip

Sector
Track Buffer (holds complete track)

Problem 2: Rotational Delay

• Important Aside: Modern disks and

controllers do many complex things “under

the covers”

– Track buffers, elevator algorithms, bad block

filtering

18 Jan 2026 SE 317: Operating Systems 57

Track Buffer (holds complete track)

Conclusion

• File Systems

– Introduction to File Systems

– Very simply file system

– FAT

– Inodes

– Unix Fast File System (FFS)

18 Jan 2026 SE 317: Operating Systems 58

	Default Section
	Slide 1: File Systems 18 January 2026 Lecture 12
	Slide 2: Concept Review
	Slide 3: Topics for Today

	File Systems
	Slide 4: Building a File System
	Slide 5: User vs. System View of a File
	Slide 6: Translating from User to System View
	Slide 7: So you are going to design a file system …
	Slide 8: So you are going to design a file system …
	Slide 9: Defragmenting
	Slide 10: Disk Management Policies
	Slide 11: Disk Management Policies
	Slide 12: Components of a File System
	Slide 13: Components of a file system
	Slide 14: Directories
	Slide 15: Directory
	Slide 16: I/O & Storage Levels
	Slide 17: File
	Slide 18: File Attributes
	Slide 19: File Attributes
	Slide 20: File Metadata
	Slide 21: In-Memory File System Structures
	Slide 22: In-Memory File System Structures

	VSFS
	Slide 23: So Far
	Slide 24: A simple File System: Ingredients
	Slide 25: Our blocks (4KB)
	Slide 26: Data Region
	Slide 27: Inode region – What’s an inode?
	Slide 28: Inode region
	Slide 29: Used/Free tracking
	Slide 30: Used/Free tracking
	Slide 31: Superblock
	Slide 32: Inode drill down
	Slide 33: What is a directory?

	FAT
	Slide 34: So Far
	Slide 35: Our first filesystem: FAT (File Allocation Table)
	Slide 36: FAT Properties
	Slide 37: Writing a File Block
	Slide 38: Create a New File
	Slide 39: Create a New File
	Slide 40: FAT Assessment
	Slide 41: FAT Assessment
	Slide 42: What about the Directory?
	Slide 43: Directory Structure
	Slide 44: Big FAT security holes

	Inode
	Slide 45: So Far
	Slide 46: Characteristics of Files
	Slide 47: Characteristics of Files
	Slide 48: Meet the Inode
	Slide 49: Unix Fast File System
	Slide 50: File Attributes
	Slide 51: Data Storage
	Slide 52: Data Storage

	FFS
	Slide 53: So Far
	Slide 54: UNIX BSD 4.2 (1983)
	Slide 55: Problem 1: How big?
	Slide 56: Problem 2: Rotational Delay
	Slide 57: Problem 2: Rotational Delay
	Slide 58: Conclusion

