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Concept Review

Deadlock Starvation Deadlock Graph
Deadlock conditions
* Mutual lusi
« Hol Cl; anx\clzv;;lon Deadlock detection
. algorithm
* No preemption
« Circular wait
Bankers Algorithm
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Topics for Today

« Address Spaces and Segmentation
— Fragmentation

« Page tables
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Problems with Segmentation

Must fit variable-sized
chunks into physical
memory

May move processes
multiple times to fit
everything

Limited options for
swapping to disk

Fragmentation: wasted
space

- External: free gaps between
allocated chunks

* Internal: don’t need all memory
within allocated chunks
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| Image source: http://www.computerhope.com/jargon/s/segfault.png |
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Making it real.
x86 Memory model with segmentation (16/32-bit)

Logical Address
(or Far Pointer)
Segment ¢
Selector Offset Linear Address
I | | I Space
. Linear Address
Global Descriptor : .
Table (GDT) —» Dir | Table | Offset | iﬁﬂﬂ
Space
Segment
Segment Page Table Page
| | Descriptor I B D B e
Page Directory = Phy. Addr.
= Lin. Addr. | Entry | -
y - ‘-I. = Entry ('l-
Segment - Y
Base Address \
[~ Page
Segmentation I Paging I
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X86 Segment Descriptors (32-bit Protected Mode)

« Segments are either implicit in the instruction (say for
code segments) or actually part of the instruction
— There are 6 registers: SS, CS, DS, ES, FS, GS

 What is in a segment register?
— A pointer to the actual segment description:

Segment Selector [13 bits] G/L | RPL

G/L selects between GDT and LDT tables (global vs local
descriptor tables)

« Two registers: GDTR and LDTR hold pointers to the
global and local descriptor tables in memory
— Includes length of table (for < 213) entries
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X86 Segment Descriptors (32-bit Protected Mode)

31

« Descriptor format (64 bits):

24

23

20

19 16,15 12

11

i)

7

a

P 1 1 1 11
Base address (24-31)

G

DB

A

L |
Limit (16-19) |P | DPL | S

I 1 1
Type

P 1 1 11 11
Base address (16-23)

Base address (Bit 0-15)

Segment Limit (Bit 0-15)

G: Granularity of segment (0: 16bit, 1: 4KiB unit)

DB: Default operand size (0; 16bit, 1: 32bit)

A: Freely available for use by software
P: Segment present
DPL: Descriptor Privilege Level
S: System Segment (0: System, 1: code or data)
Type: Code, Data, Segment
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How are segments used?

* One set of global segments (GDT) for everyone, different
set of local segments (LDT) for every process

In legacy applications (16-bit
"7 mode):

* Segments provide protection for
different components of user
programs

« Separate segments for chunks of
code, data, stacks

* Limited to 64K segments
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How are segments used?

* One set of global segments (GDT) for everyone, different
set of local segments (LDT) for every process

©

Modern use in 32-bit Mode:

« Segments “flattened’, i.e. every
segment is 4GB in size

* One exception: Use of GS (or FS) as a
pointer to “Thread Local Storage”
(TLS)

* Athread can make accesses to TLS
like this:
mov eax, gs(0x0)
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How are segments used?

* One set of global segments (GDT) for everyone, different
set of local segments (LDT) for every process

@ | Modern use in 64-bit
(“long”) mode

* Most segments (SS, CS, DS,
ES) have zero base and no
length limits

* Only FS and GS retain their
functionality (for use in TLS)
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So Far

« Address Spaces and Segmentation
— Fragmentation

« Page tables
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Paging: Physical Memory in Fixed Size Chunks

« Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (pages)
— Every chunk of physical memory is equivalent

« Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

« Each bit represents page of physical memory
1—allocated, o=free

« Should pages be as big as our previous segments?
— No: Can lead to lots of internal fragmentation
 Typically have small pages (1K-16K)
— Consequently: Need multiple pages/segment
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How to Implement Paging?

Page Table (One per Virtual address mapping
process)  Offset from Virtual address

copied to Physical Address
— Example: 10 bit offset =

* Resides in physical

memaory 1024 byte pages
» Contains physical - Virtual page # is all remaining
page and permission bits
: — Example for 32-bits: 32-10
fOI’ ea.Ch.VIFtU.al page = 22 bits, (4 million entries)
* Permissions include: — Physical page # copied from
Valid bitS, Read, Write, table into physical address
etc « Check Page Table bounds and
permissions
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Implementing Paging

Virtual Address: | Virtual Page# | Offset

Page Table Pointer

L/ Physical Address

Page #0 |V, R ¥

: Physical | Offset
\ Page #1 ——V,R/Z Page #

Page#2 |V, R, W

Page Table Size

Page#3 |V, R, W
Page #4 | N

Page #5 | V. R, W Check Perm

Access Error l

Access Error
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Simple Page Table Example

Example: 4 Byte pages 0x00
0000 0000

ex00 (& 0x04 ||
£ J

© K

L L

F| 0000 o100 113
G - 0000 1100 ' — > gyoc | E
H 0000 0100 F
Page
ox08 || G
0000 1000

K —> 0x10 |A

L B
Virtual Memory Physical Memory | €
D
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Simple Page Table Example

Virtual Address 1

OX06

0000 0110

Virtual Address 2

0000 1110

Ox09

0000 1001

OXOE

0000 0101

0x05
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What about Sharing?

Virtual Address
(Process A):

Page Table Pointer B

Virtual Address
(Process B):

Virtual | Offset Page Table Pointer A
Page#
Page #0 |V, R
Page #1 |V, R
> Page#2 |V, R, W
Page #3 |V, R, W Shared
Page #4 |N Page
Page#5 |V, R, W
~TPage#0 |V, R
Page#1 |V, R This physical page
Virtual | Offset | | Page #2 |V, R, W appears in the
Page# = 23 R address spaces of
2of= ) N both processes
| > Page#4 |V, R
Page#5 |V, R, W
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Virtual Memory View
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Virtual Memory View
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Virtual Memory View
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Challenge: Table size equal to the total
number of pages in virtual memory
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Page Table Discussion

« What needs to be switched on a context switch?
— Page table pointer and limit

* Analysis
— Pros

« Simple memory allocation
« Easy to Share

@ — Con: What if address space is sparse?
« E.g. on UNIX, code starts at 0, stack starts at (23 — 1).
« With 1K pages, need 2 million page table entries!

— Con: What if table is really big?

* Not all pages used all the time = would be nice to have a working set
of page table in memory

« How about combining paging and segmentation?
— Segments with pages inside them?
— Need some sort of multi-level translation
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What is in a Page Table Entry?

« What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page

— Permission bits: valid, read-only, read-write, write-only
« Example: Intel x86 architecture PTE:

— Address in 10, 10, 12-bit offset format
— Intermediate page tables called “Directories”

Page Frame Number Free |O |L |D [A [PCD |PWT
(Physical Page Number) | (OS)

31-12 11-9 8 7 6 5 4 3

11 Jan 2026 SE 317: Operating Systems
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What is in a Page Table Entry?

Page Frame Number Free |6 |L |[D A [PCD [PWT (U |W [P
(Physical Page Number) | (OS)

31-12 11-9 8 7 6 5 4 3 2 1 ©

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently
Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

P
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Examples of how to use a PTE

 How do we use the PTE?
— Invalid PTE can imply different things:

* Region of address space is actually invalid

or
» Page/directory is just somewhere else than memory (load it?)

— Validity checked first

« OS can use other (say) 31 bits for location info

« Usage Example: Demand Paging
— Keep only active pages in memory
— Place others on disk and mark their PTEs invalid
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Examples of how to use a PTE

Usage Example: Copy on Write
— UNIX fork gives copy of parent address space to child

« Address spaces disconnected after child created

— How to do this cheaply?
« Make copy of parent’s page tables (point at same memory)
« Mark entries in both sets of page tables as read-only
« Page fault on write creates two copies

Usage Example: Zero Fill On Demand

— New data pages must carry no information (say be
zeroed)

— Mark PTEs as invalid; page fault on use gets zeroed
page

— Often, OS creates zeroed pages in background
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How can we make the page
table closer to the memory
space we actually need?
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Fix for sparse address space: The two-level page table

Virtual
Address:

10 bits

10 bits

12 bits

Page Table Pointer —

Physical :
Virtual P1 Index | Virtual P2 Index | Offset Adﬁress: RhysicelGageh el
o
L
4B 4KB
>
>
) L
—4KB n
2 —
‘w
Tree of Page Tables -
Tables fixed size (1024 entries)
* On context-switch: save single
PageTablePtr register
Valid bits on Page Table Entries N
« Don’t need every 2"-|evel table /
« Even when they exist, 2"d-level tables 4B
can reside on disk if not in use
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Page Tables Physical

Virtual Memory View (Level 2) Memory
1111 1111 View
— Stack — 11| 11101 \_:
1110 0000 [ | éz iéﬁz > Stack — 1110 0000
l Page Tabl
(Level 1) \\\\\N

/ 1| null
1 ] | o
101 | nul} 91| 01111
Heap 100 00| 01110

1000 0000 011 | null

010 —

900 |\ 10| 01100
01| 01011

00| 01010
Data
0100 0000

11| ee101
Offset 10| 00100

Page Page ’ 01| 00011

Heap

0111 0000

Data

0)]
~
Q
@)
~

0101 0000

i

— Code ]

Code —
@@@% o ] ‘ SE 317: Operating Systems 0000 0000

00| 00010
0001 0000




. . Page Tables Physical
Virtual Memory View (Level 2) M_emOW
1111 1111 View
- — - e
L Stack _ i; 11100 — Stack —
1110 0000 l 9; 1213 I | 1110 0000
Page Table
(Level 1)
null
(ox30) 1 o] s
1001 00006 101 | nol 01| 01111
Heap W#] 00| 01110 (0x80)
1000 0000 911 | null 1000 0000
gég null Heap 9111 0000
11| 1101
000 10| 01100
01011
gé 01010 Data
Data 0101 0000
0100 000
11| ee101
Offset 10| 00100
Page Page | [ ime| [ Coded|
Code
@@@% o ) SE 317: Operating Systems 0000 0000




Result

In best case, total size of page tables =
number of pages used by program
virtual memory.

Requires two additional memory
access!
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Multi-level Translation: Segments + Pages

 What about a tree of tables?
— Lowest level page table = memory still allocated with bitmap

— Higher levels often segmented
« Could have any number of levels. Example (top segment):

Virtual

Address: Virtual Seg # | Virtual Page # | Offset ,
Physical Page # | Offset
BaseO0 Limit0 V 7
Base1 Limit1 Page #0 | VR
Base2 Limit2  V \ Page #1 | V,R
Base3 Limit3 Page #2' V,.R,W
Base4 Limit4 V Page #3 V.R,W
Base5 Limit5 N Page#4 N
Base6 Limit6 N Page #5 VRW  (_Perm D
Base7 Limit7 V| Access Error Access Error
11 Jan 2026 SE 317: Operating Systems 36



Multi-level Translation: Segments + Pages

« What must be saved/restored on context switch?

— Contents of top-level segment registers (for this
example)

— Pointer to top-level table (page table)

11 Jan 2026 SE 317: Operating Systems
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What about Sharing (Complete Segment)?

irocess Virtual Seg # | Virtual Page # Page #0 V,R
Base0 Limit0 V Page #1 VR
Basel Limit1 V Page #2 V,RW
Base2 Limit2 V page #3 V,R,W
Base3 Limit3 N Page 24 N
Base4 Limit4 V
Base5 Limit5 N Base0 v Page#> V.RW
Base6 Limit6 N Base1 \ Sh

— ared
Base7 Limit7 V Base2 Limitz V
Base3 Limit3 N Segment
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

grocess Virtual Seg # | Virtual Page # | Offset

11 Jan 2026 SE 317: Operating Systems 38



Multi-level Translation Analysis

Cj- Pros:

— Only need to allocate as many page table entries as we need for
application
* Therefore sparse address spaces are easy
— Easy memory allocation
— Easy sharing
« Share at segment or page level (need additional reference counting)

@o Cons:

— One pointer per page (typically 4K - 16K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one page in size

— Two (or more, if > 2 levels) lookups per reference
« Seems very expensive!

11 Jan 2026 SE 317: Operating Systems 39



X86 64: Four-level page table!

o Obits Obits Obits Obits 12bits
48-bit Virtual _ _ _
Address Virtual P1 Virtual P2 Virtual P3 Virtual P4 Offset
Index Index Index Index
!
3B
Page Table

Pointer

=

l

Physical Address (40-50 bits) ' Physical Page# 12 bit offset <
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Any other ideas to make it
smaller?
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Inverted Page Table

« With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual memory
allocated to processes

— Physical memory may be much less
* Much of process space may be out on disk or not in use

 Answer: use a hash table
— Called an “Inverted Page Table”

Virtual Page # | Offset

Physical Page # | Offset

Hash
Table
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Inverted Page Table

6- Pros:

— Size is independent of virtual address space

— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces

63. Cons: Complexity of managing hash changes

— Often in hardware!

Virtual Page # | Offset
Physical Page # | Offset
Hash
Table
11 Jan 2026 SE 317: Operating Systems 43



|AG4: 64Dbit addresses: Six-level page table?!?

64 bit 7bits 9bits Obits 9bits 9bits 9bits 12bits

Virtual  vjrtualP1  Virtual P2 Virtual P3  Virtual P4 Virtual P5  Virtual P6  Offset
Address Index Index Index Index Index Index

No!
Too Slow!
Too many almost empty tables

11 Jan 2026 SE 317: Operating Systems
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|A64: Inverse Page Table (IPT)

|ldea: Index page table by physical pages instead of VM

VMpage0 0x0000 VMpageO, pid0
VMpage1 0x1000
VMpage?2 0x2000 VMpage2, pid0
VMpage3 VMpage0 | 0x0 0x3000 VMpage1, pid0
Process id 0 pid}\\ Ox1 0x4000
Virtual Memory 0id0 WpageZ Ox2 0x5000
\pidO “Hpagel | O 8?838 VMpage3, pid0
free Ox4 | .
pldb\ 0x5 Physical I:)/Iaegmezry in 4KB
pid0 N\ 0x6 Page numbers in red
pidO VMpage3 Ox7

Inverse Page Table
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IPT address translation

* Need an associative map from VM page to IPT address:

— Use a hash map

Process 0 virtual address

VMpage1 (52bit)

Offset (12bit)

pidO

VMpageO

pid1

pidO

VMpage2

Hash VM
Page #

pidO

VMpage1

XX

free

pidO

pidO

pidO

VMpage3

0x0
Ox1
0x2
0x3
Ox4
0x5
0x6
Ox7

Inverse Page Table

Physical Address

0x3

Offset (12bit)

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000

VMpageO, pid0

VMpage2, pidO
VMpage1, pidO

VMpage3, pid0
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Virtual Memory View

= 1111 1111
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[
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— Stack —
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Virtual Memory View

= 1111 1111

1110 ©000

1001 0000
1000 0000

Data
0100 0000

Offset
__ Page#

26
0000 0000

Physical
Memory

AW ATV
V1C VY

 Stack T

[

1

Inverted Table
Hash(proclID & virtual page #) =
physical page #

H(11111)=
H(11110)=
H(11101)=
H(11100)=
H(10010)=
H(10001)=
H(10000)=
H(01011)=
H(01010)=
H(01001)=
H(01000)=
H(00011)=
H(00010)=
H(00001)=
H(00000)=

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

Code —
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Address Translation Comparison

_ Advantages Disadvantages

Simple Segmentation Fast context switching:  External fragmentation
Segment mapping
maintained by CPU

Paging (single-level page) No external Large table size ~ virtual
fragmentation, fast easy memory
allocation Internal fragmentation
Paged segmentation Table size ~ # of pages  Multiple memory references

in virtual memory, fast per page access

Two-level pages _
easy allocation

Inverted Table Table size ~ # of pages  Hash function more
in physical memory complex
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How Is the translation accomplished?

Virtual Physical
Addresses Addresses

> MMU

CPU

1000
« What, exactly happens inside MMU?

* One possibility: Hardware Tree Traversal
— For each virtual address, takes page table base pointer and traverses
the page table in hardware
— Generates a “Page Fault” if it encounters invalid PTE

* Fault handler will decide what to do
 More on this later

6 — Pros: Relatively fast (but still many memory accesses!)
@ — Cons: Inflexible, Complex hardware
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How Is the translation accomplished?

Virtual Physical
Addresses Addresses

MMU

CPU

1000
v

* Another possibility: Software

— Each traversal done in software
6 — Pros: Very flexible
@ — Cons: Every translation must invoke Fault!

 In fact, need way to cache translations for either case!
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Conclusion

« Address Spaces and Segmentation
— Fragmentation

« Page tables
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