Segments, Pages

11 January 2026
Lecture 11

Slides adapted from John Kubiatowicz (UC Berkeley)

11 Jan 2026 SE 317: Operating Systems

Concept Review

Deadlock Starvation Deadlock Graph
Deadlock conditions
* Mutual lusi
« Hol Cl; anx\clzv;;lon Deadlock detection
. algorithm
* No preemption
« Circular wait
Bankers Algorithm

11 Jan 2026

SE 317: Operating Systems

Topics for Today

« Address Spaces and Segmentation
— Fragmentation

« Page tables

11 Jan 2026 SE 317: Operating Systems

Problems with Segmentation

Must fit variable-sized
chunks into physical
memory

May move processes
multiple times to fit
everything

Limited options for
swapping to disk

Fragmentation: wasted
space

- External: free gaps between
allocated chunks

* Internal: don’t need all memory
within allocated chunks

11 Jan 2026 SE 317: Operating Systems

11 Jan 2026 SE 317: Operating Systems

| Image source: http://www.computerhope.com/jargon/s/segfault.png |

Segmentation Fault

uzerlihozt {tmpss

void mainl) 1
char *str
*ztr = 'A':

.

a

uzerhost { tmp,/s

uzerBhost tAtmpdsegfaul b
Segmentation fault
heil@znapt tmpdzeqfaults |

= "Hella,

zeqfault

zeqfault¥ cat segfault,c

world!":

egqfault

qLL __q+1ulf C -0 =

OKAY HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY YoU | WELL, THATS WHAT A
; ﬂ] FALLING ASLEER AND MISSTEP, STUMBLE, SEGFAULT FEELS LIKE.

HUH? YOU IMAGINE YOURSELF | AND JOLT AWAKE? \
BEFCRE YOU WALKING OR YEAN! DOUBLE - CHECK. YOUR 0
!-I!T (OMPILE, A SOMETHING, il ;ﬁ DAMN POINTERS, OkaY? || O
Y LISTEN Up 2 >
S
] 08)

11 Jan 2026 SE 317: Operating Systems

Making it real.
x86 Memory model with segmentation (16/32-bit)

Logical Address
(or Far Pointer)
Segment ¢
Selector Offset Linear Address
I | | I Space
. Linear Address
Global Descriptor : .
Table (GDT) —» Dir | Table | Offset | iﬁﬂﬂ
Space
Segment
Segment Page Table Page
| | Descriptor I B D B e
Page Directory = Phy. Addr.
= Lin. Addr. | Entry | -
y - ‘-I. = Entry ('l-
Segment - Y
Base Address \
[~ Page
Segmentation I Paging I

11 Jan 2026 SE 317: Operating Systems

X86 Segment Descriptors (32-bit Protected Mode)

« Segments are either implicit in the instruction (say for
code segments) or actually part of the instruction
— There are 6 registers: SS, CS, DS, ES, FS, GS

 What is in a segment register?
— A pointer to the actual segment description:

Segment Selector [13 bits] G/L | RPL

G/L selects between GDT and LDT tables (global vs local
descriptor tables)

« Two registers: GDTR and LDTR hold pointers to the
global and local descriptor tables in memory
— Includes length of table (for < 213) entries

11 Jan 2026 SE 317: Operating Systems

X86 Segment Descriptors (32-bit Protected Mode)

31

« Descriptor format (64 bits):

24

23

20

19 16,15 12

11

i)

7

a

P 1 1 1 11
Base address (24-31)

G

DB

A

L |
Limit (16-19) |P | DPL | S

I 1 1
Type

P 1 1 11 11
Base address (16-23)

Base address (Bit 0-15)

Segment Limit (Bit 0-15)

G: Granularity of segment (0: 16bit, 1: 4KiB unit)

DB: Default operand size (0; 16bit, 1: 32bit)

A: Freely available for use by software
P: Segment present
DPL: Descriptor Privilege Level
S: System Segment (0: System, 1: code or data)
Type: Code, Data, Segment

11 Jan 2026

SE 317: Operating Systems

10

How are segments used?

* One set of global segments (GDT) for everyone, different
set of local segments (LDT) for every process

In legacy applications (16-bit
"7 mode):

* Segments provide protection for
different components of user
programs

« Separate segments for chunks of
code, data, stacks

* Limited to 64K segments

11 Jan 2026 SE 317: Operating Systems

11

How are segments used?

* One set of global segments (GDT) for everyone, different
set of local segments (LDT) for every process

©

Modern use in 32-bit Mode:

« Segments “flattened’, i.e. every
segment is 4GB in size

* One exception: Use of GS (or FS) as a
pointer to “Thread Local Storage”
(TLS)

* Athread can make accesses to TLS
like this:
mov eax, gs(0x0)

11 Jan 2026 SE 317: Operating Systems

12

How are segments used?

* One set of global segments (GDT) for everyone, different
set of local segments (LDT) for every process

@ | Modern use in 64-bit
(“long”) mode

* Most segments (SS, CS, DS,
ES) have zero base and no
length limits

* Only FS and GS retain their
functionality (for use in TLS)

11 Jan 2026 SE 317: Operating Systems

13

So Far

« Address Spaces and Segmentation
— Fragmentation

« Page tables

11 Jan 2026 SE 317: Operating Systems

14

Paging: Physical Memory in Fixed Size Chunks

« Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (pages)
— Every chunk of physical memory is equivalent

« Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

« Each bit represents page of physical memory
1—allocated, o=free

« Should pages be as big as our previous segments?
— No: Can lead to lots of internal fragmentation
 Typically have small pages (1K-16K)
— Consequently: Need multiple pages/segment

11 Jan 2026 SE 317: Operating Systems

15

How to Implement Paging?

Page Table (One per Virtual address mapping
process) Offset from Virtual address

copied to Physical Address
— Example: 10 bit offset =

* Resides in physical

memaory 1024 byte pages
» Contains physical - Virtual page # is all remaining
page and permission bits
: — Example for 32-bits: 32-10
fOI’ ea.Ch.VIFtU.al page = 22 bits, (4 million entries)
* Permissions include: — Physical page # copied from
Valid bitS, Read, Write, table into physical address
etc « Check Page Table bounds and
permissions

11 Jan 2026 SE 317: Operating Systems 16

Implementing Paging

Virtual Address: | Virtual Page# | Offset

Page Table Pointer

L/ Physical Address

Page #0 |V, R ¥

: Physical | Offset
\ Page #1 ——V,R/Z Page #

Page#2 |V, R, W

Page Table Size

Page#3 |V, R, W
Page #4 | N

Page #5 | V. R, W Check Perm

Access Error l

Access Error

11 Jan 2026 SE 317: Operating Systems 17

Simple Page Table Example

Example: 4 Byte pages 0x00
0000 0000

ex00 (& 0x04 ||
£ J

© K

L L

F| 0000 o100 113
G - 0000 1100 ' — > gyoc | E
H 0000 0100 F
Page
ox08 || G
0000 1000

K —> 0x10 |A

L B
Virtual Memory Physical Memory | €
D

11 Jan 2026 SE 317: Operating Systems

Simple Page Table Example

Virtual Address 1

OX06

0000 0110

Virtual Address 2

0000 1110

Ox09

0000 1001

OXOE

0000 0101

0x05

11 Jan 2026

SE 317: Operating Systems

19

What about Sharing?

Virtual Address
(Process A):

Page Table Pointer B

Virtual Address
(Process B):

Virtual | Offset Page Table Pointer A
Page#
Page #0 |V, R
Page #1 |V, R
> Page#2 |V, R, W
Page #3 |V, R, W Shared
Page #4 |N Page
Page#5 |V, R, W
~TPage#0 |V, R
Page#1 |V, R This physical page
Virtual | Offset | | Page #2 |V, R, W appears in the
Page# = 23 R address spaces of
2of=) N both processes
| > Page#4 |V, R
Page#5 |V, R, W

11 Jan 2026

SE 317: Operating Systems

20

Virtual Memory View

1111 1111

11111

11110

— Stack —

&

1111 ©000

. — 7 liie1

11100
11011

11010

11001

11000
10111

10110

10101

10100

10011

le010

|

1000 0000 Heap

10001
10000
01111
01110
01101

01100

01011

01010

Data
0100 0000

01001
01000
00111
00110
00101

00100

00011
00010

00001

00000

N\

Page Table

Physical Memory View

11101
11100
null
null
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011

00010

-Z;lzéa ;

&

)]
~
Q
Q
Y

1110 0000

Hea
p 0111 0000

Data

0101 0000

T
T

1 Code —

A— 0001 0000

Page # Offset | Code |
00dbJauHZ0]

SE 317: Operating Systems

0000 0000

Virtual Memory View

1111 1111

11111

11110

 Stack T
1110 0000

. — 7 liie1

11100
11011

11010

11001

[

11000
10111

10110

Stack grows

10101

to 1110 0000

10100

10011

le010

|

Heap

1000 0000

10001
10000
01111
01110
01101

01100

01011

01010

Data
0100 0000

01001
01000
00111
00110
00101

00100

00011
00010

00001

00000

N\

Page Table

Physical Memory View

11101
11100
null
null
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011

00010

-Z;lzéa ;

&

)]
~
Q
Q
Y

1110 0000

Hea
p 0111 0000

Data

0101 0000

T
T

1 Code —

A— 0001 0000

Page # Offset | Code |
00dbJauHZ0]

SE 317: Operating Systems

0000 0000

Virtual Memory View

1111 1111

Page Table

11111

-Z;lz

11101

11110 (11100

 Stack T
1110 0000

| — 11101 |e111
,,—””””;?11199 10110
,/,,,//f/”’%?11911

null

11010 |Null

11001 |Null

Null

[

11000

10111 |Null

10110 |[Null

10101 |Null

10100 |Null

10011 |Null

10010 (10000

|

Heap

1000 0000

10001
10000
01111
01110
01101

01111
01110
Null
Null
Null

01100 [Null

01011 (01101

o 223,
\

\ Stack

Physical Memory View

1110 0000

— Stack —

Allocate new
pages where
we have room

0111 0000

01010 |01100

Data
0100 0000

01001 (01011

01000 |01010

00111
00110
00101

Null
Null
Null

00100 [Null

00011
00010

00101
00100

00001 00011

00000 00010

N\

— ——[Code]

0101 0000

0001 0000

Page # Offset | Code |

SE 317: Operating Systems

004b BuW36

0000 0000

Challenge: Table size equal to the total
number of pages in virtual memory

11 Jan 2026

24

Page Table Discussion

« What needs to be switched on a context switch?
— Page table pointer and limit

* Analysis
— Pros

« Simple memory allocation
« Easy to Share

@ — Con: What if address space is sparse?
« E.g. on UNIX, code starts at 0, stack starts at (23 — 1).
« With 1K pages, need 2 million page table entries!

— Con: What if table is really big?

* Not all pages used all the time = would be nice to have a working set
of page table in memory

« How about combining paging and segmentation?
— Segments with pages inside them?
— Need some sort of multi-level translation

11 Jan 2026 SE 317: Operating Systems 25

What is in a Page Table Entry?

« What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page

— Permission bits: valid, read-only, read-write, write-only
« Example: Intel x86 architecture PTE:

— Address in 10, 10, 12-bit offset format
— Intermediate page tables called “Directories”

Page Frame Number Free |O |L |D [A [PCD |PWT
(Physical Page Number) | (OS)

31-12 11-9 8 7 6 5 4 3

11 Jan 2026 SE 317: Operating Systems

26

What is in a Page Table Entry?

Page Frame Number Free |6 |L |[D A [PCD [PWT (U |W [P
(Physical Page Number) | (OS)

31-12 11-9 8 7 6 5 4 3 2 1 ©

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently
Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

P

11 Jan 2026 SE 317: Operating Systems 27

Examples of how to use a PTE

 How do we use the PTE?
— Invalid PTE can imply different things:

* Region of address space is actually invalid

or
» Page/directory is just somewhere else than memory (load it?)

— Validity checked first

« OS can use other (say) 31 bits for location info

« Usage Example: Demand Paging
— Keep only active pages in memory
— Place others on disk and mark their PTEs invalid

11 Jan 2026 SE 317: Operating Systems 28

Examples of how to use a PTE

Usage Example: Copy on Write
— UNIX fork gives copy of parent address space to child

« Address spaces disconnected after child created

— How to do this cheaply?
« Make copy of parent’s page tables (point at same memory)
« Mark entries in both sets of page tables as read-only
« Page fault on write creates two copies

Usage Example: Zero Fill On Demand

— New data pages must carry no information (say be
zeroed)

— Mark PTEs as invalid; page fault on use gets zeroed
page

— Often, OS creates zeroed pages in background

11 Jan 2026 SE 317: Operating Systems 29

How can we make the page
table closer to the memory
space we actually need?

11 Jan 2026 SE 317: Operating Systems 30

Fix for sparse address space: The two-level page table

Virtual
Address:

10 bits

10 bits

12 bits

Page Table Pointer —

Physical :
Virtual P1 Index | Virtual P2 Index | Offset Adﬁress: RhysicelGageh el
o
L
4B 4KB
>
>
) L
—4KB n
2 —
‘w
Tree of Page Tables -
Tables fixed size (1024 entries)
* On context-switch: save single
PageTablePtr register
Valid bits on Page Table Entries N
« Don’t need every 2"-|evel table /
« Even when they exist, 2"d-level tables 4B
can reside on disk if not in use

11 Jan 2026

SE 317: Operating Systems

31

Page Tables Physical

Virtual Memory View (Level 2) Memory
1111 1111 View
— Stack — 11| 11101 _:
1110 0000 [| éz iéﬁz > Stack — 1110 0000
l Page Tabl
(Level 1) \\\\\N

/ 1| null
1] | o
101 | nul} 91| 01111
Heap 100 00| 01110

1000 0000 011 | null

010 —

900 |\ 10| 01100
01| 01011

00| 01010
Data
0100 0000

11| ee101
Offset 10| 00100

Page Page ’ 01| 00011

Heap

0111 0000

Data

0)]
~
Q
@)
~

0101 0000

i

— Code]

Code —
@@@% o] ‘ SE 317: Operating Systems 0000 0000

00| 00010
0001 0000

. . Page Tables Physical
Virtual Memory View (Level 2) M_emOW
1111 1111 View
- — - e
L Stack _ i; 11100 — Stack —
1110 0000 l 9; 1213 I | 1110 0000
Page Table
(Level 1)
null
(ox30) 1 o] s
1001 00006 101 | nol 01| 01111
Heap W#] 00| 01110 (0x80)
1000 0000 911 | null 1000 0000
gég null Heap 9111 0000
11| 1101
000 10| 01100
01011
gé 01010 Data
Data 0101 0000
0100 000
11| ee101
Offset 10| 00100
Page Page | [ime| [Coded|
Code
@@@% o) SE 317: Operating Systems 0000 0000

Result

In best case, total size of page tables =
number of pages used by program
virtual memory.

Requires two additional memory
access!

11 Jan 2026 SE 317: Operating Systems 35

Multi-level Translation: Segments + Pages

 What about a tree of tables?
— Lowest level page table = memory still allocated with bitmap

— Higher levels often segmented
« Could have any number of levels. Example (top segment):

Virtual

Address: Virtual Seg # | Virtual Page # | Offset ,
Physical Page # | Offset
BaseO0 Limit0 V 7
Base1 Limit1 Page #0 | VR
Base2 Limit2 V \ Page #1 | V,R
Base3 Limit3 Page #2' V,.R,W
Base4 Limit4 V Page #3 V.R,W
Base5 Limit5 N Page#4 N
Base6 Limit6 N Page #5 VRW (_Perm D
Base7 Limit7 V| Access Error Access Error
11 Jan 2026 SE 317: Operating Systems 36

Multi-level Translation: Segments + Pages

« What must be saved/restored on context switch?

— Contents of top-level segment registers (for this
example)

— Pointer to top-level table (page table)

11 Jan 2026 SE 317: Operating Systems

37

What about Sharing (Complete Segment)?

irocess Virtual Seg # | Virtual Page # Page #0 V,R
Base0 Limit0 V Page #1 VR
Basel Limit1 V Page #2 V,RW
Base2 Limit2 V page #3 V,R,W
Base3 Limit3 N Page 24 N
Base4 Limit4 V
Base5 Limit5 N Base0 v Page#> V.RW
Base6 Limit6 N Base1 \ Sh

— ared
Base7 Limit7 V Base2 Limitz V
Base3 Limit3 N Segment
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

grocess Virtual Seg # | Virtual Page # | Offset

11 Jan 2026 SE 317: Operating Systems 38

Multi-level Translation Analysis

Cj- Pros:

— Only need to allocate as many page table entries as we need for
application
* Therefore sparse address spaces are easy
— Easy memory allocation
— Easy sharing
« Share at segment or page level (need additional reference counting)

@o Cons:

— One pointer per page (typically 4K - 16K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one page in size

— Two (or more, if > 2 levels) lookups per reference
« Seems very expensive!

11 Jan 2026 SE 317: Operating Systems 39

X86 64: Four-level page table!

o Obits Obits Obits Obits 12bits
48-bit Virtual _ _ _
Address Virtual P1 Virtual P2 Virtual P3 Virtual P4 Offset
Index Index Index Index
!
3B
Page Table

Pointer

=

l

Physical Address (40-50 bits) ' Physical Page# 12 bit offset <

11 Jan 2026 SE 317: Operating Systems

Any other ideas to make it
smaller?

11 Jan 2026 SE 317: Operating Systems

41

Inverted Page Table

« With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual memory
allocated to processes

— Physical memory may be much less
* Much of process space may be out on disk or not in use

 Answer: use a hash table
— Called an “Inverted Page Table”

Virtual Page # | Offset

Physical Page # | Offset

Hash
Table

11 Jan 2026 SE 317: Operating Systems 42

Inverted Page Table

6- Pros:

— Size is independent of virtual address space

— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces

63. Cons: Complexity of managing hash changes

— Often in hardware!

Virtual Page # | Offset
Physical Page # | Offset
Hash
Table
11 Jan 2026 SE 317: Operating Systems 43

|AG4: 64Dbit addresses: Six-level page table?!?

64 bit 7bits 9bits Obits 9bits 9bits 9bits 12bits

Virtual vjrtualP1 Virtual P2 Virtual P3 Virtual P4 Virtual P5 Virtual P6 Offset
Address Index Index Index Index Index Index

No!
Too Slow!
Too many almost empty tables

11 Jan 2026 SE 317: Operating Systems

44

|A64: Inverse Page Table (IPT)

|ldea: Index page table by physical pages instead of VM

VMpage0 0x0000 VMpageO, pid0
VMpage1 0x1000
VMpage?2 0x2000 VMpage2, pid0
VMpage3 VMpage0 | 0x0 0x3000 VMpage1, pid0
Process id 0 pid}\\ Ox1 0x4000
Virtual Memory 0id0 WpageZ Ox2 0x5000
\pidO “Hpagel | O 8?838 VMpage3, pid0
free Ox4 | .
pldb\ 0x5 Physical I:)/Iaegmezry in 4KB
pid0 N\ 0x6 Page numbers in red
pidO VMpage3 Ox7

Inverse Page Table

11 Jan 2026 SE 317: Operating Systems 45

IPT address translation

* Need an associative map from VM page to IPT address:

— Use a hash map

Process 0 virtual address

VMpage1 (52bit)

Offset (12bit)

pidO

VMpageO

pid1

pidO

VMpage2

Hash VM
Page #

pidO

VMpage1

XX

free

pidO

pidO

pidO

VMpage3

0x0
Ox1
0x2
0x3
Ox4
0x5
0x6
Ox7

Inverse Page Table

Physical Address

0x3

Offset (12bit)

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000

VMpageO, pid0

VMpage2, pidO
VMpage1, pidO

VMpage3, pid0

11 Jan 2026

SE 317: Operating Systems

46

Virtual Memory View

= 1111 1111

1110 ©000

1001 0000
1000 0000

Data
0100 0000

Offset
__ Page#

26
0000 0000

Physical
Memory

AW ATV
V1C VY

 Stack T

[

|

Heap

Inverted Table

(11111)=
(11110)=
(11101)=
(11100)=
(10010)=
(10001)=
(10000)=
(01011)=
(01010)=
(01001)=
(01000)=
(00011)=
(00010)=
(00001)=
(00000)=

Hash(procID & virtual page #) =
physical page #

11101
11100
101114
10110

AN

Stack

— Stack —

10000

01111

Heap

01110
01101

01100

01011
01010
00101
00100
00011
00010 |

/"

Data

—
Heap
Data

— Code

Code —

SE 317: Operating Systems

1110 000«

0111 006

0101 000«

0001 000«
47
0000 000!

Virtual Memory View

= 1111 1111

1110 ©000

1001 0000
1000 0000

Data
0100 0000

Offset
__ Page#

26
0000 0000

Physical
Memory

AW ATV
V1C VY

 Stack T

[

1

Inverted Table
Hash(proclID & virtual page #) =
physical page #

H(11111)=
H(11110)=
H(11101)=
H(11100)=
H(10010)=
H(10001)=
H(10000)=
H(01011)=
H(01010)=
H(01001)=
H(01000)=
H(00011)=
H(00010)=
H(00001)=
H(00000)=

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

Code —

SE 317: Operating Systems

: StaCk : 1110 006«
— Stack —]
F16363F) 0111 000¢
Data
0101 000¢
— Code |
0001 000«
48
0000 000!

Address Translation Comparison

_ Advantages Disadvantages

Simple Segmentation Fast context switching: External fragmentation
Segment mapping
maintained by CPU

Paging (single-level page) No external Large table size ~ virtual
fragmentation, fast easy memory
allocation Internal fragmentation
Paged segmentation Table size ~ # of pages Multiple memory references

in virtual memory, fast per page access

Two-level pages _
easy allocation

Inverted Table Table size ~ # of pages Hash function more
in physical memory complex

11 Jan 2026 SE 317: Operating Systems 49

How Is the translation accomplished?

Virtual Physical
Addresses Addresses

> MMU

CPU

1000
« What, exactly happens inside MMU?

* One possibility: Hardware Tree Traversal
— For each virtual address, takes page table base pointer and traverses
the page table in hardware
— Generates a “Page Fault” if it encounters invalid PTE

* Fault handler will decide what to do
 More on this later

6 — Pros: Relatively fast (but still many memory accesses!)
@ — Cons: Inflexible, Complex hardware

11 Jan 2026 SE 317: Operating Systems 50

How Is the translation accomplished?

Virtual Physical
Addresses Addresses

MMU

CPU

1000
v

* Another possibility: Software

— Each traversal done in software
6 — Pros: Very flexible
@ — Cons: Every translation must invoke Fault!

 In fact, need way to cache translations for either case!

11 Jan 2026 SE 317: Operating Systems 51

Conclusion

« Address Spaces and Segmentation
— Fragmentation

« Page tables

11 Jan 2026 SE 317: Operating Systems

52

	Default Section
	Slide 1: Segments, Pages 11 January 2026 Lecture 11
	Slide 2: Concept Review
	Slide 3: Topics for Today

	Segments
	Slide 4: Problems with Segmentation
	Slide 5
	Slide 6
	Slide 7: Segmentation Fault
	Slide 8: Making it real: x86 Memory model with segmentation (16/32-bit)
	Slide 9: X86 Segment Descriptors (32-bit Protected Mode)
	Slide 10: X86 Segment Descriptors (32-bit Protected Mode)
	Slide 11: How are segments used?
	Slide 12: How are segments used?
	Slide 13: How are segments used?

	Paging
	Slide 14: So Far
	Slide 15: Paging: Physical Memory in Fixed Size Chunks
	Slide 16: How to Implement Paging?
	Slide 17: Implementing Paging
	Slide 18: Simple Page Table Example
	Slide 19: Simple Page Table Example
	Slide 20: What about Sharing?
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Page Table Discussion
	Slide 26: What is in a Page Table Entry?
	Slide 27: What is in a Page Table Entry?
	Slide 28: Examples of how to use a PTE
	Slide 29: Examples of how to use a PTE
	Slide 30
	Slide 31: Fix for sparse address space: The two-level page table
	Slide 32
	Slide 33
	Slide 35: Result
	Slide 36: Multi-level Translation: Segments + Pages
	Slide 37: Multi-level Translation: Segments + Pages
	Slide 38: What about Sharing (Complete Segment)?
	Slide 39: Multi-level Translation Analysis
	Slide 40: X86_64: Four-level page table!

	Inverted Page Table
	Slide 41
	Slide 42: Inverted Page Table
	Slide 43: Inverted Page Table
	Slide 44: IA64: 64bit addresses: Six-level page table?!?
	Slide 45: IA64: Inverse Page Table (IPT)
	Slide 46: IPT address translation
	Slide 47
	Slide 48
	Slide 49: Address Translation Comparison
	Slide 50: How is the translation accomplished?
	Slide 51: How is the translation accomplished?
	Slide 52: Conclusion

