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Segments, Pages

11 January 2026

Lecture 11

Slides adapted from John Kubiatowicz (UC Berkeley)



Concept Review

Deadlock Starvation Deadlock Graph

Deadlock conditions

• Mutual exclusion

• Hold and wait

• No preemption

• Circular wait

Deadlock detection 
algorithm

Bankers Algorithm
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Topics for Today

• Address Spaces and Segmentation

– Fragmentation

• Page tables
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Problems with Segmentation

Must fit variable-sized 
chunks into physical 

memory

May move processes 
multiple times to fit 

everything

Limited options for 
swapping to disk

Fragmentation: wasted 
space

• External: free gaps between 
allocated chunks

• Internal: don’t need all memory 
within allocated chunks
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Image source: http://imgur.com/OFEy7



Segmentation Fault
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Making it real: 

x86 Memory model with segmentation (16/32-bit)
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X86 Segment Descriptors (32-bit Protected Mode)

• Segments are either implicit in the instruction (say for 

code segments) or actually part of the instruction

– There are 6 registers: SS, CS, DS, ES, FS, GS

• What is in a segment register?  

– A pointer to the actual segment description:

G/L selects between GDT and LDT tables (global vs local 

descriptor tables)

• Two registers: GDTR and LDTR hold pointers to the 

global and local descriptor tables in memory

– Includes length of table (for < 213) entries
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Segment Selector [13 bits] G/L RPL



X86 Segment Descriptors (32-bit Protected Mode)

• Descriptor format (64 bits):

 G: Granularity of segment (0: 16bit, 1: 4KiB unit)

 DB: Default operand size (0; 16bit, 1: 32bit)

 A: Freely available for use by software

 P: Segment present

 DPL: Descriptor Privilege Level

 S: System Segment (0: System, 1: code or data)

 Type: Code, Data, Segment
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How are segments used?
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• One set of global segments (GDT) for everyone, different 

set of local segments (LDT) for every process 

In legacy applications (16-bit 
mode):

• Segments provide protection for 
different components of user 
programs

• Separate segments for chunks of 
code, data, stacks

• Limited to 64K segments



How are segments used?
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• One set of global segments (GDT) for everyone, different 

set of local segments (LDT) for every process 

Modern use in 32-bit Mode:

• Segments “flattened”, i.e. every 
segment is 4GB in size

• One exception: Use of GS (or FS) as a 
pointer to “Thread Local Storage” 
(TLS)

• A thread can make accesses to TLS 
like this:

mov eax, gs(0x0)



How are segments used?
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• One set of global segments (GDT) for everyone, different 

set of local segments (LDT) for every process 

Modern use in 64-bit 
(“long”) mode

• Most segments (SS, CS, DS, 
ES) have zero base and no 
length limits

• Only FS and GS retain their 
functionality (for use in TLS)



So Far

• Address Spaces and Segmentation

– Fragmentation

• Page tables
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Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?

– Allocate physical memory in fixed size chunks (pages)

– Every chunk of physical memory is equivalent

• Can use simple vector of bits to handle allocation:

 00110001110001101 … 110010

• Each bit represents page of physical memory

 1allocated, 0free

• Should pages be as big as our previous segments?

– No: Can lead to lots of internal fragmentation

• Typically have small pages (1K-16K)

– Consequently: Need multiple pages/segment
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How to Implement Paging?

Page Table (One per 

process)

• Resides in physical 

memory

• Contains physical 

page and permission 

for each virtual page

• Permissions include: 

Valid bits, Read, Write, 

etc

Virtual address mapping

• Offset from Virtual address 

copied to Physical Address

– Example: 10 bit offset  

1024 byte pages

• Virtual page # is all remaining 

bits

– Example for 32-bits: 32-10 

= 22 bits, (4 million entries)

– Physical page # copied from 

table into physical address

• Check Page Table bounds and 

permissions
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Implementing Paging
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Virtual Address: Virtual Page# Offset

Page #0 V, R

Page #1 V, R

Page #2 V, R, W

Page #3 V, R, W

Page #4 N

Page #5 V, R, W

Page Table Pointer

Page Table Size >

Access Error

Physical Address

Physical 

Page #

Offset

Check Perm

Access Error



Simple Page Table Example
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Example: 4 Byte pages

0x00 A

B

C

D

0x04 E

F

G

H

0x08 I

J

K

L

0 4

1 3

2 1

Virtual Memory

Page

Table

0x00

0x04 I

J

K

L

0x08

0x0C E

F

G

H

0x10 A

B

C

D

Physical Memory

0000 0000

0000 0100

0000 1000

0001 0000

0000 1100

0000 0100



Simple Page Table Example
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0x06

Virtual Address 1

0000 0110 0000 1110 0x0E

0x09

Virtual Address 2

0000 1001 0000 0101 0x05



What about Sharing?
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Virtual Address

(Process A):

Virtual

Page#

Offset

Page #0 V, R

Page #1 V, R

Page #2 V, R, W

Page #3 V, R, W

Page #4 N

Page #5 V, R, W

Page Table Pointer A

Shared 

Page

Virtual Address

(Process B):

Virtual

Page#

Offset

Page #0 V, R

Page #1 V, R

Page #2 V, R, W

Page #3 V, R, W

Page #4 V, R

Page #5 V, R, W

Page Table Pointer B

This physical page 

appears in the 

address spaces of 

both processes
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11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

11101
11100
null
null
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011
00010

Page TableVirtual Memory View

0000 0000

Page # Offset Code

Data

Heap

Stack

0100 0000

1000 0000

1111 0000

1111 1111

Physical Memory View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

11 Jan 2026
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11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

11101
11100
null
null
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011
00010

Page TableVirtual Memory View

Page # Offset Code

Data

Heap

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical Memory View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack grows 

to 1110 0000

0000 000011 Jan 2026
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11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

11101
11100
10111
10110
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011
00010

Page TableVirtual Memory View

0000 0000

Page # Offset Code

Data

Heap

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical Memory View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Allocate new 

pages where 

we have room

Stack
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Challenge: Table size equal to the total 

number of pages in virtual memory
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Page Table Discussion
• What needs to be switched on a context switch? 

– Page table pointer and limit

• Analysis
– Pros

• Simple memory allocation

• Easy to Share

– Con: What if address space is sparse?
• E.g. on UNIX, code starts at 0, stack starts at (231 − 1).

• With 1𝐾 pages, need 2 million page table entries!

– Con: What if table is really big?
• Not all pages used all the time  would be nice to have a working set 

of page table in memory

• How about combining paging and segmentation?
– Segments with pages inside them?

– Need some sort of multi-level translation
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What is in a Page Table Entry?

• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page

– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:

– Address in 10, 10, 12-bit offset format

– Intermediate page tables called “Directories”
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Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0



What is in a Page Table Entry?

  P: Present (same as “valid” bit in other architectures) 

  W: Writeable

  U: User accessible

  PWT: Page write transparent: external cache write-through

  PCD: Page cache disabled (page cannot be cached)

  A: Accessed: page has been accessed recently

  D: Dirty (PTE only): page has been modified recently

  L: L=14MB page (directory only).

  Bottom 22 bits of virtual address serve as offset
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Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0



Examples of how to use a PTE

• How do we use the PTE?
– Invalid PTE can imply different things:

• Region of address space is actually invalid 

or 

• Page/directory is just somewhere else than memory (load it?)

– Validity checked first
• OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory

– Place others on disk and mark their PTEs invalid
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Examples of how to use a PTE
• Usage Example: Copy on Write

– UNIX fork gives copy of parent address space to child
• Address spaces disconnected after child created

– How to do this cheaply?  
• Make copy of parent’s page tables (point at same memory)

• Mark entries in both sets of page tables as read-only

• Page fault on write creates two copies 

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be 

zeroed)

– Mark PTEs as invalid; page fault on use gets zeroed 

page

– Often, OS creates zeroed pages in background
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How can we make the page 

table closer to the memory 

space we actually need?
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• Tree of Page Tables

• Tables fixed size (1024 entries)

• On context-switch: save single 

PageTablePtr register

• Valid bits on Page Table Entries 

• Don’t need every 2nd-level table

• Even when they exist, 2nd-level tables 

can reside on disk if not in use

Fix for sparse address space: The two-level page table
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10 bits 10 bits 12 bits

Virtual P1 Index Virtual P2 Index Offset
Virtual

Address:
Physical Page # OffsetPhysical

Address:

Page Table Pointer

4𝐾𝐵
4𝐵

4𝐵

4𝐾𝐵



SE 317: Operating Systems 32

Page Tables

(Level 2)
Virtual Memory View

Page

1

Offset

Code

Data

Heap

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110

11
10
01
00

null
10000
01111
01110

11
10
01
00

01101
01100
01011
01010

11
10
01
00

00101
00100
00011
00010

11
10
01
00

null
null

null

null

111
110
101
100
011
010
001
000

Page Table

(Level 1)

Page

2

0000 000011 Jan 2026
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Page Tables

(Level 2)
Virtual Memory View

0000 0000

Page

1

Offset

Code

Data

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110

11
10
01
00

null
10000
01111
01110

11
10
01
00

01101
01100
01011
01010

11
10
01
00

00101
00100
00011
00010

11
10
01
00

null
null

null

null

111
110
101
100
011
010
001
000

Page Table

(Level 1)

Page

2

(0x90)
1001 0000

(0x80)
1000 0000

Heap
Heap
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Result

In best case, total size of page tables ≈ 

number of pages used by program 

virtual memory.

Requires two additional memory 

access!
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Multi-level Translation: Segments + Pages

• What about a tree of tables?

– Lowest level page table  memory still allocated with bitmap

– Higher levels often segmented

• Could have any number of levels. Example (top segment):
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Virtual Seg # Virtual Page # Offset
Virtual

Address:

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

Page #0 V,R

Page #1 V,R

Page #2 V,R,W

Page #3 V,R,W

Page #4 N

Page #5 V,R,W>

Access Error

Perm?

Access Error

Physical Page # Offset



Multi-level Translation: Segments + Pages

• What must be saved/restored on context switch?

– Contents of top-level segment registers (for this 

example)

– Pointer to top-level table (page table)
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What about Sharing (Complete Segment)?
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Virtual Seg # Virtual Page # Offset
Process

A

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

Page #0 V,R

Page #1 V,R

Page #2 V,R,W

Page #3 V,R,W

Page #4 N

Page #5 V,R,W

Virtual Seg # Virtual Page # Offset
Process

B

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

Shared

Segment



Multi-level Translation Analysis

• Pros:

– Only need to allocate as many page table entries as we need for 

application

• Therefore sparse address spaces are easy

– Easy memory allocation

– Easy sharing

• Share at segment or page level (need additional reference counting)

• Cons:

– One pointer per page (typically 4𝐾 –  16𝐾 pages today)

– Page tables need to be contiguous

• However, previous example keeps tables to exactly one page in size

– Two (or more, if > 2 levels) lookups per reference

• Seems very expensive!
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X86_64: Four-level page table!
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48-bit Virtual

Address

9bits 9bits 9bits 9bits 12bits

Virtual P1

Index

Virtual P2

Index

Virtual P3

Index

Virtual P4

Index
Offset

Page Table 

Pointer

8B

Physical Address (40-50 bits) Physical Page# 12 bit offset



Any other ideas to make it 

smaller?
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Inverted Page Table

• With all previous examples (“Forward Page Tables”)

– Size of page table is at least as large as amount of virtual memory 

allocated to processes

– Physical memory may be much less

• Much of process space may be out on disk or not in use

• Answer: use a hash table

– Called an “Inverted Page Table”
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Virtual Page # Offset

Hash 

Table

Physical Page # Offset



Inverted Page Table

• Pros:

– Size is independent of virtual address space

– Directly related to amount of physical memory

– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes

– Often in hardware!
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Virtual Page # Offset

Hash 

Table

Physical Page # Offset



IA64: 64bit addresses: Six-level page table?!?
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64 bit

Virtual

Address

7bits 9bits 9bits 9bits 9bits 9bits 12bits

Virtual P1

Index

Virtual P2

Index

Virtual P3

Index

Virtual P4

Index

Virtual P5

Index

Virtual P6

Index

Offset

No!

Too Slow!

Too many almost empty tables



IA64: Inverse Page Table (IPT)

Idea: Index page table by physical pages instead of VM
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VMpage0

VMpage1

VMpage2

VMpage3

Process id 0

Virtual Memory

pid0 VMpage0 0x0

pid1 0x1

pid0 VMpage2 0x2

pid0 VMpage1 0x3

xx free 0x4

pid0 0x5

pid0 0x6

pid0 VMpage3 0x7

Inverse Page Table

0x0000 VMpage0, pid0

0x1000

0x2000 VMpage2, pid0

0x3000 VMpage1, pid0

0x4000

0x5000

0x6000

0x7000 VMpage3, pid0

Physical Memory in 4KB 

pages

Page numbers in red



IPT address translation

• Need an associative map from VM page to IPT address:

– Use a hash map

11 Jan 2026 SE 317: Operating Systems 46

pid0 VMpage0 0x0

pid1 0x1

pid0 VMpage2 0x2

pid0 VMpage1 0x3

xx free 0x4

pid0 0x5

pid0 0x6

pid0 VMpage3 0x7

Inverse Page Table

0x0000 VMpage0, pid0

0x1000

0x2000 VMpage2, pid0

0x3000 VMpage1, pid0

0x4000

0x5000

0x6000

0x7000 VMpage3, pid0

Process 0 virtual address

VMpage1 (52bit) Offset (12bit)

Hash VM

Page #

Physical Address

0x3 Offset (12bit)
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Virtual Memory View

0000 0000

Page #

Offset

Code

Data

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

H(11111)=
H(11110)=
H(11101)=
H(11100)=
H(10010)=
H(10001)=
H(10000)=
H(01011)=
H(01010)=
H(01001)=
H(01000)=
H(00011)=
H(00010)=
H(00001)=
H(00000)=

Inverted Table

Hash(procID & virtual page #) = 

physical page #

1001 0000

Heap
Heap

4711 Jan 2026
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Virtual Memory View

0000 0000

Page #

Offset

Code

Data

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

H(11111)=
H(11110)=
H(11101)=
H(11100)=
H(10010)=
H(10001)=
H(10000)=
H(01011)=
H(01010)=
H(01001)=
H(01000)=
H(00011)=
H(00010)=
H(00001)=
H(00000)=

Inverted Table

Hash(procID & virtual page #) = 

physical page #

1001 0000

Heap
Heap
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Address Translation Comparison

Advantages Disadvantages

Simple Segmentation Fast context switching: 

Segment mapping 

maintained by CPU 

External fragmentation

Paging (single-level page) No external 

fragmentation, fast easy 

allocation

Large table size ~ virtual 

memory

Internal fragmentation

Paged segmentation Table size ~ # of pages 

in virtual memory, fast 

easy allocation 

Multiple memory references 

per page access Two-level pages

Inverted Table Table size ~ # of pages 

in physical memory

Hash function more 

complex
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How is the translation accomplished?
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• What, exactly happens inside MMU?

• One possibility: Hardware Tree Traversal

– For each virtual address, takes page table base pointer and traverses 

the page table in hardware

– Generates a “Page Fault” if it encounters invalid PTE

• Fault handler will decide what to do

• More on this later

– Pros: Relatively fast (but still many memory accesses!)

– Cons: Inflexible, Complex hardware

MMU

Virtual

Addresses

Physical

Addresses



How is the translation accomplished?
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• Another possibility: Software

– Each traversal done in software

– Pros: Very flexible

– Cons: Every translation must invoke Fault!

• In fact, need way to cache translations for either case!

MMU

Virtual

Addresses

Physical

Addresses



Conclusion

• Address Spaces and Segmentation

– Fragmentation

• Page tables

11 Jan 2026 SE 317: Operating Systems 52


	Default Section
	Slide 1: Segments, Pages  11 January 2026 Lecture 11
	Slide 2: Concept Review
	Slide 3: Topics for Today

	Segments
	Slide 4: Problems with Segmentation
	Slide 5
	Slide 6
	Slide 7: Segmentation Fault
	Slide 8: Making it real:  x86 Memory model with segmentation (16/32-bit)
	Slide 9: X86 Segment Descriptors (32-bit Protected Mode)
	Slide 10: X86 Segment Descriptors (32-bit Protected Mode)
	Slide 11: How are segments used?
	Slide 12: How are segments used?
	Slide 13: How are segments used?

	Paging
	Slide 14: So Far
	Slide 15: Paging: Physical Memory in Fixed Size Chunks
	Slide 16: How to Implement Paging?
	Slide 17: Implementing Paging
	Slide 18: Simple Page Table Example
	Slide 19: Simple Page Table Example
	Slide 20: What about Sharing?
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Page Table Discussion
	Slide 26: What is in a Page Table Entry?
	Slide 27: What is in a Page Table Entry?
	Slide 28: Examples of how to use a PTE
	Slide 29: Examples of how to use a PTE
	Slide 30
	Slide 31: Fix for sparse address space: The two-level page table
	Slide 32
	Slide 33
	Slide 35: Result
	Slide 36: Multi-level Translation: Segments + Pages
	Slide 37: Multi-level Translation: Segments + Pages
	Slide 38: What about Sharing (Complete Segment)?
	Slide 39: Multi-level Translation Analysis
	Slide 40: X86_64: Four-level page table!

	Inverted Page Table
	Slide 41
	Slide 42: Inverted Page Table
	Slide 43: Inverted Page Table
	Slide 44: IA64: 64bit addresses: Six-level page table?!?
	Slide 45: IA64: Inverse Page Table (IPT)
	Slide 46: IPT address translation
	Slide 47
	Slide 48
	Slide 49: Address Translation Comparison
	Slide 50: How is the translation accomplished?
	Slide 51: How is the translation accomplished?
	Slide 52: Conclusion


