
11 Jan 2026 SE 317: Operating Systems 1

Segments, Pages

11 January 2026

Lecture 11

Slides adapted from John Kubiatowicz (UC Berkeley)

Concept Review

Deadlock Starvation Deadlock Graph

Deadlock conditions

• Mutual exclusion

• Hold and wait

• No preemption

• Circular wait

Deadlock detection
algorithm

Bankers Algorithm

11 Jan 2026 SE 317: Operating Systems 2

Topics for Today

• Address Spaces and Segmentation

– Fragmentation

• Page tables

11 Jan 2026 SE 317: Operating Systems 3

Problems with Segmentation

Must fit variable-sized
chunks into physical

memory

May move processes
multiple times to fit

everything

Limited options for
swapping to disk

Fragmentation: wasted
space

• External: free gaps between
allocated chunks

• Internal: don’t need all memory
within allocated chunks

11 Jan 2026 SE 317: Operating Systems 4

11 Jan 2026 SE 317: Operating Systems 5

Im
a

g
e

 s
o

u
rc

e
:
X

K
C

D
 (

h
tt

p
s
:/

/w
w

w
.x

k
c
d
.c

o
m

/5
6
2
/)

11 Jan 2026 SE 317: Operating Systems 6

Image source: http://imgur.com/OFEy7

Segmentation Fault

11 Jan 2026 SE 317: Operating Systems 7

S
o

u
rc

e
:

X
K

C
D

Im
a
g
e
 s

o
u
rc

e
:

h
tt

p
:/

/w
w

w
.c

o
m

p
u
te

rh
o
p
e
.c

o
m

/j
a

rg
o
n
/s

/s
e
g
fa

u
lt
.p

n
g

Making it real:

x86 Memory model with segmentation (16/32-bit)

11 Jan 2026 SE 317: Operating Systems 8

X86 Segment Descriptors (32-bit Protected Mode)

• Segments are either implicit in the instruction (say for

code segments) or actually part of the instruction

– There are 6 registers: SS, CS, DS, ES, FS, GS

• What is in a segment register?

– A pointer to the actual segment description:

G/L selects between GDT and LDT tables (global vs local

descriptor tables)

• Two registers: GDTR and LDTR hold pointers to the

global and local descriptor tables in memory

– Includes length of table (for < 213) entries

11 Jan 2026 SE 317: Operating Systems 9

Segment Selector [13 bits] G/L RPL

X86 Segment Descriptors (32-bit Protected Mode)

• Descriptor format (64 bits):

 G: Granularity of segment (0: 16bit, 1: 4KiB unit)

 DB: Default operand size (0; 16bit, 1: 32bit)

 A: Freely available for use by software

 P: Segment present

 DPL: Descriptor Privilege Level

 S: System Segment (0: System, 1: code or data)

 Type: Code, Data, Segment

11 Jan 2026 SE 317: Operating Systems 10

How are segments used?

11 Jan 2026 SE 317: Operating Systems 11

• One set of global segments (GDT) for everyone, different

set of local segments (LDT) for every process

In legacy applications (16-bit
mode):

• Segments provide protection for
different components of user
programs

• Separate segments for chunks of
code, data, stacks

• Limited to 64K segments

How are segments used?

11 Jan 2026 SE 317: Operating Systems 12

• One set of global segments (GDT) for everyone, different

set of local segments (LDT) for every process

Modern use in 32-bit Mode:

• Segments “flattened”, i.e. every
segment is 4GB in size

• One exception: Use of GS (or FS) as a
pointer to “Thread Local Storage”
(TLS)

• A thread can make accesses to TLS
like this:

mov eax, gs(0x0)

How are segments used?

11 Jan 2026 SE 317: Operating Systems 13

• One set of global segments (GDT) for everyone, different

set of local segments (LDT) for every process

Modern use in 64-bit
(“long”) mode

• Most segments (SS, CS, DS,
ES) have zero base and no
length limits

• Only FS and GS retain their
functionality (for use in TLS)

So Far

• Address Spaces and Segmentation

– Fragmentation

• Page tables

11 Jan 2026 SE 317: Operating Systems 14

Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?

– Allocate physical memory in fixed size chunks (pages)

– Every chunk of physical memory is equivalent

• Can use simple vector of bits to handle allocation:

 00110001110001101 … 110010

• Each bit represents page of physical memory

 1allocated, 0free

• Should pages be as big as our previous segments?

– No: Can lead to lots of internal fragmentation

• Typically have small pages (1K-16K)

– Consequently: Need multiple pages/segment

11 Jan 2026 SE 317: Operating Systems 15

How to Implement Paging?

Page Table (One per

process)

• Resides in physical

memory

• Contains physical

page and permission

for each virtual page

• Permissions include:

Valid bits, Read, Write,

etc

Virtual address mapping

• Offset from Virtual address

copied to Physical Address

– Example: 10 bit offset 

1024 byte pages

• Virtual page # is all remaining

bits

– Example for 32-bits: 32-10

= 22 bits, (4 million entries)

– Physical page # copied from

table into physical address

• Check Page Table bounds and

permissions

11 Jan 2026 SE 317: Operating Systems 16

Implementing Paging

11 Jan 2026 SE 317: Operating Systems 17

Virtual Address: Virtual Page# Offset

Page #0 V, R

Page #1 V, R

Page #2 V, R, W

Page #3 V, R, W

Page #4 N

Page #5 V, R, W

Page Table Pointer

Page Table Size >

Access Error

Physical Address

Physical

Page #

Offset

Check Perm

Access Error

Simple Page Table Example

11 Jan 2026 SE 317: Operating Systems 18

Example: 4 Byte pages

0x00 A

B

C

D

0x04 E

F

G

H

0x08 I

J

K

L

0 4

1 3

2 1

Virtual Memory

Page

Table

0x00

0x04 I

J

K

L

0x08

0x0C E

F

G

H

0x10 A

B

C

D

Physical Memory

0000 0000

0000 0100

0000 1000

0001 0000

0000 1100

0000 0100

Simple Page Table Example

11 Jan 2026 SE 317: Operating Systems 19

0x06

Virtual Address 1

0000 0110 0000 1110 0x0E

0x09

Virtual Address 2

0000 1001 0000 0101 0x05

What about Sharing?

11 Jan 2026 SE 317: Operating Systems 20

Virtual Address

(Process A):

Virtual

Page#

Offset

Page #0 V, R

Page #1 V, R

Page #2 V, R, W

Page #3 V, R, W

Page #4 N

Page #5 V, R, W

Page Table Pointer A

Shared

Page

Virtual Address

(Process B):

Virtual

Page#

Offset

Page #0 V, R

Page #1 V, R

Page #2 V, R, W

Page #3 V, R, W

Page #4 V, R

Page #5 V, R, W

Page Table Pointer B

This physical page

appears in the

address spaces of

both processes

SE 317: Operating Systems 21

11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

11101
11100
null
null
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011
00010

Page TableVirtual Memory View

0000 0000

Page # Offset Code

Data

Heap

Stack

0100 0000

1000 0000

1111 0000

1111 1111

Physical Memory View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

11 Jan 2026

SE 317: Operating Systems 22

11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

11101
11100
null
null
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011
00010

Page TableVirtual Memory View

Page # Offset Code

Data

Heap

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical Memory View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack grows

to 1110 0000

0000 000011 Jan 2026

SE 317: Operating Systems 23

11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

11101
11100
10111
10110
null
Null
Null
Null
Null
Null
Null
Null
Null
10000
01111
01110
Null
Null
Null
Null
01101
01100
01011
01010
Null
Null
Null
Null
00101
00100
00011
00010

Page TableVirtual Memory View

0000 0000

Page # Offset Code

Data

Heap

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical Memory View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Allocate new

pages where

we have room

Stack

11 Jan 2026

Challenge: Table size equal to the total

number of pages in virtual memory

11 Jan 2026 SE 317: Operating Systems 24

Im
a
g
e
 s

o
u
rc

e
:

h
tt

p
s
:/

/w
w

w
.w

a
lld

e
v
il.

c
o
m

/2
2
6
1

-a
rt

w
o
rk

-c
h
a
ir
s
-g

ia
n
t-

ta
b
le

s
.h

tm
l

Page Table Discussion
• What needs to be switched on a context switch?

– Page table pointer and limit

• Analysis
– Pros

• Simple memory allocation

• Easy to Share

– Con: What if address space is sparse?
• E.g. on UNIX, code starts at 0, stack starts at (231 − 1).

• With 1𝐾 pages, need 2 million page table entries!

– Con: What if table is really big?
• Not all pages used all the time  would be nice to have a working set

of page table in memory

• How about combining paging and segmentation?
– Segments with pages inside them?

– Need some sort of multi-level translation

11 Jan 2026 SE 317: Operating Systems 25

What is in a Page Table Entry?

• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page

– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:

– Address in 10, 10, 12-bit offset format

– Intermediate page tables called “Directories”

11 Jan 2026 SE 317: Operating Systems 26

Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0

What is in a Page Table Entry?

 P: Present (same as “valid” bit in other architectures)

 W: Writeable

 U: User accessible

 PWT: Page write transparent: external cache write-through

 PCD: Page cache disabled (page cannot be cached)

 A: Accessed: page has been accessed recently

 D: Dirty (PTE only): page has been modified recently

 L: L=14MB page (directory only).

 Bottom 22 bits of virtual address serve as offset

11 Jan 2026 SE 317: Operating Systems 27

Page Frame Number

(Physical Page Number)

Free

(OS)

0 L D A PCD PWT U W P

31-12 11-9 8 7 6 5 4 3 2 1 0

Examples of how to use a PTE

• How do we use the PTE?
– Invalid PTE can imply different things:

• Region of address space is actually invalid

or

• Page/directory is just somewhere else than memory (load it?)

– Validity checked first
• OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory

– Place others on disk and mark their PTEs invalid

11 Jan 2026 SE 317: Operating Systems 28

Examples of how to use a PTE
• Usage Example: Copy on Write

– UNIX fork gives copy of parent address space to child
• Address spaces disconnected after child created

– How to do this cheaply?
• Make copy of parent’s page tables (point at same memory)

• Mark entries in both sets of page tables as read-only

• Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be

zeroed)

– Mark PTEs as invalid; page fault on use gets zeroed

page

– Often, OS creates zeroed pages in background

11 Jan 2026 SE 317: Operating Systems 29

How can we make the page

table closer to the memory

space we actually need?

11 Jan 2026 SE 317: Operating Systems 30

• Tree of Page Tables

• Tables fixed size (1024 entries)

• On context-switch: save single

PageTablePtr register

• Valid bits on Page Table Entries

• Don’t need every 2nd-level table

• Even when they exist, 2nd-level tables

can reside on disk if not in use

Fix for sparse address space: The two-level page table

11 Jan 2026 SE 317: Operating Systems 31

10 bits 10 bits 12 bits

Virtual P1 Index Virtual P2 Index Offset
Virtual

Address:
Physical Page # OffsetPhysical

Address:

Page Table Pointer

4𝐾𝐵
4𝐵

4𝐵

4𝐾𝐵

SE 317: Operating Systems 32

Page Tables

(Level 2)
Virtual Memory View

Page

1

Offset

Code

Data

Heap

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Heap

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110

11
10
01
00

null
10000
01111
01110

11
10
01
00

01101
01100
01011
01010

11
10
01
00

00101
00100
00011
00010

11
10
01
00

null
null

null

null

111
110
101
100
011
010
001
000

Page Table

(Level 1)

Page

2

0000 000011 Jan 2026

SE 317: Operating Systems 33

Page Tables

(Level 2)
Virtual Memory View

0000 0000

Page

1

Offset

Code

Data

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110

11
10
01
00

null
10000
01111
01110

11
10
01
00

01101
01100
01011
01010

11
10
01
00

00101
00100
00011
00010

11
10
01
00

null
null

null

null

111
110
101
100
011
010
001
000

Page Table

(Level 1)

Page

2

(0x90)
1001 0000

(0x80)
1000 0000

Heap
Heap

11 Jan 2026

Result

In best case, total size of page tables ≈

number of pages used by program

virtual memory.

Requires two additional memory

access!

11 Jan 2026 SE 317: Operating Systems 35

Multi-level Translation: Segments + Pages

• What about a tree of tables?

– Lowest level page table  memory still allocated with bitmap

– Higher levels often segmented

• Could have any number of levels. Example (top segment):

11 Jan 2026 SE 317: Operating Systems 36

Virtual Seg # Virtual Page # Offset
Virtual

Address:

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

Page #0 V,R

Page #1 V,R

Page #2 V,R,W

Page #3 V,R,W

Page #4 N

Page #5 V,R,W>

Access Error

Perm?

Access Error

Physical Page # Offset

Multi-level Translation: Segments + Pages

• What must be saved/restored on context switch?

– Contents of top-level segment registers (for this

example)

– Pointer to top-level table (page table)

11 Jan 2026 SE 317: Operating Systems 37

What about Sharing (Complete Segment)?

11 Jan 2026 SE 317: Operating Systems 38

Virtual Seg # Virtual Page # Offset
Process

A

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

Page #0 V,R

Page #1 V,R

Page #2 V,R,W

Page #3 V,R,W

Page #4 N

Page #5 V,R,W

Virtual Seg # Virtual Page # Offset
Process

B

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 V

Base5 Limit5 N

Base6 Limit6 N

Base7 Limit7 V

Shared

Segment

Multi-level Translation Analysis

• Pros:

– Only need to allocate as many page table entries as we need for

application

• Therefore sparse address spaces are easy

– Easy memory allocation

– Easy sharing

• Share at segment or page level (need additional reference counting)

• Cons:

– One pointer per page (typically 4𝐾 – 16𝐾 pages today)

– Page tables need to be contiguous

• However, previous example keeps tables to exactly one page in size

– Two (or more, if > 2 levels) lookups per reference

• Seems very expensive!

11 Jan 2026 SE 317: Operating Systems 39

X86_64: Four-level page table!

11 Jan 2026 SE 317: Operating Systems 40

48-bit Virtual

Address

9bits 9bits 9bits 9bits 12bits

Virtual P1

Index

Virtual P2

Index

Virtual P3

Index

Virtual P4

Index
Offset

Page Table

Pointer

8B

Physical Address (40-50 bits) Physical Page# 12 bit offset

Any other ideas to make it

smaller?

11 Jan 2026 SE 317: Operating Systems 41

Inverted Page Table

• With all previous examples (“Forward Page Tables”)

– Size of page table is at least as large as amount of virtual memory

allocated to processes

– Physical memory may be much less

• Much of process space may be out on disk or not in use

• Answer: use a hash table

– Called an “Inverted Page Table”

11 Jan 2026 SE 317: Operating Systems 42

Virtual Page # Offset

Hash

Table

Physical Page # Offset

Inverted Page Table

• Pros:

– Size is independent of virtual address space

– Directly related to amount of physical memory

– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes

– Often in hardware!

11 Jan 2026 SE 317: Operating Systems 43

Virtual Page # Offset

Hash

Table

Physical Page # Offset

IA64: 64bit addresses: Six-level page table?!?

11 Jan 2026 SE 317: Operating Systems 44

64 bit

Virtual

Address

7bits 9bits 9bits 9bits 9bits 9bits 12bits

Virtual P1

Index

Virtual P2

Index

Virtual P3

Index

Virtual P4

Index

Virtual P5

Index

Virtual P6

Index

Offset

No!

Too Slow!

Too many almost empty tables

IA64: Inverse Page Table (IPT)

Idea: Index page table by physical pages instead of VM

11 Jan 2026 SE 317: Operating Systems 45

VMpage0

VMpage1

VMpage2

VMpage3

Process id 0

Virtual Memory

pid0 VMpage0 0x0

pid1 0x1

pid0 VMpage2 0x2

pid0 VMpage1 0x3

xx free 0x4

pid0 0x5

pid0 0x6

pid0 VMpage3 0x7

Inverse Page Table

0x0000 VMpage0, pid0

0x1000

0x2000 VMpage2, pid0

0x3000 VMpage1, pid0

0x4000

0x5000

0x6000

0x7000 VMpage3, pid0

Physical Memory in 4KB

pages

Page numbers in red

IPT address translation

• Need an associative map from VM page to IPT address:

– Use a hash map

11 Jan 2026 SE 317: Operating Systems 46

pid0 VMpage0 0x0

pid1 0x1

pid0 VMpage2 0x2

pid0 VMpage1 0x3

xx free 0x4

pid0 0x5

pid0 0x6

pid0 VMpage3 0x7

Inverse Page Table

0x0000 VMpage0, pid0

0x1000

0x2000 VMpage2, pid0

0x3000 VMpage1, pid0

0x4000

0x5000

0x6000

0x7000 VMpage3, pid0

Process 0 virtual address

VMpage1 (52bit) Offset (12bit)

Hash VM

Page #

Physical Address

0x3 Offset (12bit)

SE 317: Operating Systems

Virtual Memory View

0000 0000

Page #

Offset

Code

Data

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

H(11111)=
H(11110)=
H(11101)=
H(11100)=
H(10010)=
H(10001)=
H(10000)=
H(01011)=
H(01010)=
H(01001)=
H(01000)=
H(00011)=
H(00010)=
H(00001)=
H(00000)=

Inverted Table

Hash(procID & virtual page #) =

physical page #

1001 0000

Heap
Heap

4711 Jan 2026

SE 317: Operating Systems

Virtual Memory View

0000 0000

Page #

Offset

Code

Data

Stack

0100 0000

1000 0000

1110 0000

1111 1111

Physical

Memory

View

Code

Data

Stack

0000 0000

0001 0000

0101 0000

0111 0000

1110 0000

Stack

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

H(11111)=
H(11110)=
H(11101)=
H(11100)=
H(10010)=
H(10001)=
H(10000)=
H(01011)=
H(01010)=
H(01001)=
H(01000)=
H(00011)=
H(00010)=
H(00001)=
H(00000)=

Inverted Table

Hash(procID & virtual page #) =

physical page #

1001 0000

Heap
Heap

4811 Jan 2026

Address Translation Comparison

Advantages Disadvantages

Simple Segmentation Fast context switching:

Segment mapping

maintained by CPU

External fragmentation

Paging (single-level page) No external

fragmentation, fast easy

allocation

Large table size ~ virtual

memory

Internal fragmentation

Paged segmentation Table size ~ # of pages

in virtual memory, fast

easy allocation

Multiple memory references

per page access Two-level pages

Inverted Table Table size ~ # of pages

in physical memory

Hash function more

complex

11 Jan 2026 SE 317: Operating Systems 49

How is the translation accomplished?

11 Jan 2026 SE 317: Operating Systems 50

• What, exactly happens inside MMU?

• One possibility: Hardware Tree Traversal

– For each virtual address, takes page table base pointer and traverses

the page table in hardware

– Generates a “Page Fault” if it encounters invalid PTE

• Fault handler will decide what to do

• More on this later

– Pros: Relatively fast (but still many memory accesses!)

– Cons: Inflexible, Complex hardware

MMU

Virtual

Addresses

Physical

Addresses

How is the translation accomplished?

11 Jan 2026 SE 317: Operating Systems 51

• Another possibility: Software

– Each traversal done in software

– Pros: Very flexible

– Cons: Every translation must invoke Fault!

• In fact, need way to cache translations for either case!

MMU

Virtual

Addresses

Physical

Addresses

Conclusion

• Address Spaces and Segmentation

– Fragmentation

• Page tables

11 Jan 2026 SE 317: Operating Systems 52

	Default Section
	Slide 1: Segments, Pages 11 January 2026 Lecture 11
	Slide 2: Concept Review
	Slide 3: Topics for Today

	Segments
	Slide 4: Problems with Segmentation
	Slide 5
	Slide 6
	Slide 7: Segmentation Fault
	Slide 8: Making it real: x86 Memory model with segmentation (16/32-bit)
	Slide 9: X86 Segment Descriptors (32-bit Protected Mode)
	Slide 10: X86 Segment Descriptors (32-bit Protected Mode)
	Slide 11: How are segments used?
	Slide 12: How are segments used?
	Slide 13: How are segments used?

	Paging
	Slide 14: So Far
	Slide 15: Paging: Physical Memory in Fixed Size Chunks
	Slide 16: How to Implement Paging?
	Slide 17: Implementing Paging
	Slide 18: Simple Page Table Example
	Slide 19: Simple Page Table Example
	Slide 20: What about Sharing?
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Page Table Discussion
	Slide 26: What is in a Page Table Entry?
	Slide 27: What is in a Page Table Entry?
	Slide 28: Examples of how to use a PTE
	Slide 29: Examples of how to use a PTE
	Slide 30
	Slide 31: Fix for sparse address space: The two-level page table
	Slide 32
	Slide 33
	Slide 35: Result
	Slide 36: Multi-level Translation: Segments + Pages
	Slide 37: Multi-level Translation: Segments + Pages
	Slide 38: What about Sharing (Complete Segment)?
	Slide 39: Multi-level Translation Analysis
	Slide 40: X86_64: Four-level page table!

	Inverted Page Table
	Slide 41
	Slide 42: Inverted Page Table
	Slide 43: Inverted Page Table
	Slide 44: IA64: 64bit addresses: Six-level page table?!?
	Slide 45: IA64: Inverse Page Table (IPT)
	Slide 46: IPT address translation
	Slide 47
	Slide 48
	Slide 49: Address Translation Comparison
	Slide 50: How is the translation accomplished?
	Slide 51: How is the translation accomplished?
	Slide 52: Conclusion

