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Starvation and Deadlock, 

Memory and Segments

4 January 2026

Lecture 10

Slides adapted from John Kubiatowicz (UC Berkeley)



Concept Review

Scheduler
First Come First 

Serve

Round Robin 
(RR)

• Scheduling 
quantum

Priority 
scheduling

• Priority inversion

Starvation

Measurements

• Response time

• Average wait time

• Average completion 
time

Shortest Job First
Shortest Remaining 

Time First

Lottery Scheduling Multi-level feedback O(1)

CFS

• Virtual Runtime
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Topics for Today

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation
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Today’s concepts

4 Jan 2026 SE 317: Operating Systems 4



Starvation vs

• Starvation: Thread waits indefinitely

– Example: Low-priority thread waiting for resources 

constantly in use by high-priority threads

• Deadlock: Circular waiting for resources

– Thread 𝐴 owns Res 1 and is waiting for Res 2

Thread 𝐵 owns Res 2 and is waiting for Res 1

• Deadlock  Starvation but not vice versa

– Starvation can end (but doesn’t have to)

– Deadlock can’t end without external intervention
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  Graph

Thread 
A

Res 2

Thread 
B

Res 1
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Wait for Owned by

Owned by



Four requirements for Deadlock

Mutual exclusion

Only one thread 
at a time can 

use a resource.

Hold and wait

Thread holding 
at least one 
resource is 
waiting to 
acquire 

additional 
resources held 

by other threads

No preemption

Resources are 
released only 
voluntarily by 

the thread 
holding the 

resource, after 
thread is 

finished with it

Circular wait

There exists a 
set 𝑇1, … , 𝑇𝑛  of 
waiting threads

𝑇1is waiting for a 
resource that is 
held by 𝑇2

𝑇2 is waiting for 
a resource that 
is held by 𝑇3

…

𝑇𝑛 is waiting for 
a resource that 
is held by 𝑇1
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Occasional Deadlock
• Deadlock not always deterministic: Example of two mutexes:
  Thread A Thread B
  x.P(); y.P();

  y.P(); x.P();

  y.V(); x.V();

  x.V(); y.V();

• Deadlock won’t always happen with this code

– Have to have exactly the right timing (“wrong” timing?)

– So you release a piece of software, and you tested it, and there it is, 
controlling a humus making machine…

• Deadlocks occur with multiple resources

– Means you can’t decompose the problem

– Can’t solve deadlock for each resource independently

• Example: System with two disk drives and two threads

– Each thread needs two disk drives to function

– Each thread gets one disk and waits for another one
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Deadlock Examples

Deadlock

Grab 2 
resources

Routing 
and 

Travel
Multi-

shared 
resources
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One Lane Bridge Crossing

4 Jan 2026 SE 317: Operating Systems 11

B
y
 Q

rp
n
u
t 

(O
w

n
 w

o
rk

) 
[C

C
 B

Y
-S

A
 3

.0
 (

h
tt

p
:/

/c
re

a
ti
v
e
c
o
m

m
o
n
s
.o

rg
/l
ic

e
n
s
e
s
/b

y
-s

a
/3

.0
)]

, 
v
ia

 W
ik

im
e
d
ia

 C
o
m

m
o
n
s



One Lane Bridge Crossing

Each segment of road is a 
resource

• Car must own the segment under it

• Must acquire segment that it is 
moving into

For bridge: Must acquire both 
halves 

• Traffic only in one direction at a 
time 

• Problem occurs when two cars in 
opposite directions on bridge: each 
acquires one segment and needs 
next

If a deadlock occurs, it can 
be resolved if one car backs 
up (preempt resources and 
rollback)

• Several cars may have to be 
backed up 

Starvation is possible

• East-going traffic really fast  no 
one goes west
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Deadlock
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Back 

up!
You 

Back up!



Trains (Wormhole-Routed Network)

4 Jan 2026 SE 317: Operating Systems 14

• Circular dependency (Deadlock!)
– Each train wants to turn right

– Blocked by other trains



Trains (Wormhole-Routed Network)

• Circular dependency (Deadlock!)
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four 
directions
– How can we prevent circular dependency?
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Dining Students Problem

• Five chopsticks/Five students 

(really cheap restaurant)
– Free-for all: Student will grab any one they 

can

– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (!)

– Eventually everyone will get chance to eat

• How to prevent deadlock?
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Picturing deadlock can 

help us understand it 

better…
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Resource-Allocation Graph

• System Model    

– A set of Threads 𝑇1, 𝑇2, … , 𝑇𝑛

– Resource types 𝑅1, 𝑅2, … , 𝑅𝑚

 CPU cycles, memory space, I/O devices

– Each resource type 𝑅𝑖 has 𝑊𝑖 instances.

– Each thread utilizes a resource as follows:

• Request() / Use() / Release()

• Resource-Allocation Graph:

– 𝑉 is partitioned into two types:

• 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} the set of threads in the system.

• 𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛} the set of resource types in system

– Request Edge – Directed edge 𝑇𝑖 → 𝑅𝑗

– Assignment Edge – Directed edge 𝑅𝑗 → 𝑇𝑖
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Legend
𝑇1 𝑇2

𝑅1 𝑅2



Request Edge – Directed edge 𝑇𝑖 → 𝑅𝑗

 Assignment Edge – Directed edge 𝑅𝑗 → 𝑇𝑖
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Resource Allocation Graph Examples

𝑇1 𝑇2

𝑅1 𝑅2

𝑅3 𝑅4

𝑇3

Simple Resource Allocation

Graph

𝑇1 𝑇2

𝑅1 𝑅2

𝑅3 𝑅4

𝑇3

Allocation Graph with

Deadlock



Request Edge – Directed edge 𝑇1 → 𝑅𝑗

 Assignment Edge – Directed edge 𝑅𝑗 → 𝑇𝑖
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Resource Allocation Graph Examples

Allocation Graph with Cycle

But No Deadlock

𝑇1 𝑇2

𝑅1

𝑇3 𝑇4

𝑅2



Methods for Handling Deadlock
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Allow system to enter 
deadlock and then recover

• Requires deadlock detection 
algorithm

• Some technique for forcibly 
preempting resources and/or 
terminating tasks

Ensure that system will 
never enter a deadlock

• Need to monitor all lock 
acquisitions

• Selectively deny those that 
might lead to deadlock

Ignore the problem and 
pretend that deadlocks
never occur in the system

• Used by most operating systems, 
including UNIX



Deadlock Detection Algorithm

• Only one of each type of resource  look for loops

• More General Deadlock Detection Algorithm

– Let [𝑋] represent an 𝑚-ary vector of non-negative integers 

(quantities of resources of each type):

[FreeResources]: Current free resources each type

[RequestX]: Current requests from thread 𝑋

[AllocX]:  Current resources held by thread 𝑋

• See if tasks can eventually terminate on their own
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Deadlock Detection Algorithm
[Avail] = [FreeResources] 

Add all nodes to UNFINISHED 

do {

 done = true

 foreach node in UNFINISHED { 

  if ([Requestnode] <= [Avail]) {

   remove node from UNFINISHED

   [Avail] = [Avail] + [Allocnode]

   done = false

  }

 }

} until(done)    

• Nodes left in UNFINISHED  deadlocked
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Terminate thread

Force it to give up resources

• In bridge example: Godzilla 

picks up a car, hurls it into 

the river.  Deadlock solved!

• Expel a dining student (or 

tell him there’s free beer 

elsewhere)

• Not always possible

– killing a thread

holding a mutex

leaves the world 

inconsistent

Preempt resources

Without killing off thread 

• Take away resources 

from thread temporarily

• Doesn’t always fit with 

semantics of computation
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What to do when detect deadlock?
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Roll back

Undo actions of deadlocked 
threads 

• Hit the rewind button on 
TiVo, pretend last few 
minutes never happened

• For bridge example, make 
one car roll backwards (may 
require others behind him)

• Common technique in 
databases (transactions)

• If you restart in exactly the 
same way, may reenter 
deadlock once again

None of the above

• Many operating systems 

use other options
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What to do when detect deadlock?
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• Include enough resources 

so that no one ever runs out 

of resources. Doesn’t have 

to be infinite, just large

• Give illusion of infinite 

resources (ex. virtual 

memory)

• Examples:

– Ayalon Fwy with 12,000 lanes.  

Never wait!

– Infinite disk space (not realistic 

yet?)

No Sharing of resources

• Totally independent 
threads

• Not very realistic
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Techniques for Preventing Deadlock
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Don’t allow waiting

• How the phone company avoids 

deadlock

– Call to your Mom in Haifa, works 

its way through the phone lines, 

but if blocked get busy signal. 

• Technique used in Ethernet and 

some multiprocessor nets

– Everyone speaks at once.  On 

collision, back off and retry

• Inefficient, since need to retry

– Consider: Driving to Tel Aviv; 

when hit traffic jam, suddenly 

you’re transported back home and 

told to retry!

Request Ahead

Make all threads request everything 

they’ll need at the beginning.

• Problem: Predicting future is hard, 

tend to over-estimate resources

Example:

• If need 2 chopsticks, request both 

at same time

• Don’t leave home until we know 

no one is using any intersection 

between here and where you 

want to go; only one car on 

Ayalon Fwy at a time
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Techniques for Preventing Deadlock
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Ordering

Force all threads to request 
resources in a particular order 
preventing any cyclic use of 
resources

• Thus, preventing deadlock

Example (x.P, y.P, z.P,…)

• Make tasks request disk, 
then memory, then…

• Keep from deadlock on 
freeways around Tel Aviv by 
requiring everyone to go 
clockwise

Recall: Dimension Ordering
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Techniques for Preventing Deadlock
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• Force ordering of 
channels (tracks)

• Protocol: Always go east-
west first, then north-
south

• X then Y



Trains (Wormhole-Routed Network)

• Circular dependency (Deadlock!)
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four 
directions
– Force ordering of channels (tracks)

• Protocol: Always go east-west first, then north-south

– “dimension ordering” (X then Y)
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Dimension Ordering
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Forbidden



Another Idea: Accounting

• First Idea:

– Thread 𝑡 states maximum resource needs in advance

– System allows thread 𝑡 to proceed if:

( Avail − 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑡 ≥ 𝑀𝑎𝑥) remaining that might be 

needed by any thread
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Banker’s algorithm (less conservative):

• Allocate resources dynamically

– Evaluate each request and grant if some ordering of threads is still 

deadlock free afterward 

– Technique: Pretend each request is granted, then run deadlock 

detection algorithm, substituting 

 ( 𝑀𝑎𝑥𝑛𝑜𝑑𝑒 − [𝐴𝑙𝑙𝑜𝑐𝑛𝑜𝑑𝑒] ≤ [𝐴𝑣𝑎𝑖𝑙]) for ([𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑜𝑑𝑒] ≤ [𝐴𝑣𝑎𝑖𝑙])
Grant request if result is deadlock free (conservative!)

– Keeps system in a safe state, i.e. there exists a sequence 

{𝑇1, 𝑇2, … , 𝑇𝑛} with 𝑇1 requesting all remaining resources, finishing, 

then 𝑇2 requesting all remaining resources, etc..

• Algorithm allows the sum of maximum resource needs of 

all current threads to be greater than total resources
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Banking Example 1
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Max = 3
Max = 3

Max = 3

Request 3

Give 3

Holding: 3

Request 2

Give 2
Holding: 2

Request 1

Give 1

Holding: 1



Banking Example 2
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Max = 3
Max = 3

Max = 3

Request 2

Give 2

Holding: 2

Request 2

Give 2
Holding: 2

Request 2

No/Wait



Banker’s Algorithm Example

Banker’s algorithm with dining students

• Safe (won’t cause deadlock) if when you 

try to grab chopstick either:

1. Not the last chopstick

2. Is the last chopstick but someone will have 

two afterwards

• What if 𝑘-handed students? Don’t allow 

if:

– It’s the last one, no one would have 𝑘

– It’s 2nd to last, and no one would have 𝑘 − 1

– It’s 3rd to last, and no one would have 𝑘 − 2

– etc…
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So Far

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation
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Virtualizing Resources

• Physical Reality: Different Processes/Threads share the 

same hardware

– Need to multiplex CPU (Just finished: scheduling)

– Need to multiplex use of Memory (Today)

• Why worry about memory sharing?

– The complete working state of a process and/or kernel is defined 

by its data in memory (and registers)

– Consequently, cannot just let different threads of control use the 

same memory

• Physics: Two different pieces of data cannot occupy the same 

locations in memory

– Probably don’t want different threads to even have access to each 

other’s memory (protection)
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Important Aspects of Memory Multiplexing

Translation
Controlled 

Overlap

Protection
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𝑎 → 𝑏

Process 
1

Process 
2



Translation: 𝑎 → 𝑏 

Ability to translate 
accesses from one 

address space (virtual) 
to a different one 

(physical)

When translation 
exists, processor uses 

virtual addresses, 
physical memory uses 

physical addresses

Side effects:

• Can be used to avoid 
overlap

• Can be used to give 
uniform view of memory to 
programs
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Controlled Overlap

• Separate state of threads should not collide in physical 

memory.  

– Unexpected overlap causes chaos!

• Want to be able to overlap when desired for 

communication

– Also debugging…
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Protection

• Prevent access to private memory of other processes

• Different pages of memory can be given special behavior 

(Read Only, Invisible to user programs, etc).

• Kernel data protected from User programs

• Programs protected from themselves
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Read

only



So Far

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation
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Recall: Loading
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Hardware

Processor
Memory

Storage 

(Disk)

Network Displays

Input Devices

Software
ISA
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Threads

Processes

Address Spaces

Sockets

Files

Windows

OS Hardware Virtualization

OS

Protection

Boundary

Controller



Recall a bit of the old days → 

Relocating loaders
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Multi-step Processing of a Program for Execution

• Preparation of a program 

for execution involves 

components at:
– Compile time (ex. gcc)

– Link/Load time (UNIX ld does 

link)

– Execution time (ex. dynamic 

libs)

• Addresses can be bound 

to final values anywhere 

in this path
– Depends on hardware support 

– Also depends on operating 

system
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Multi-step Processing of a Program for Execution

• Dynamic Libraries

– Linking postponed until 

execution

– Small piece of code, stub, 

used to locate appropriate 

memory-resident library 

routine

– Stub replaces itself with the 

address of the routine, and 

executes routine
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Binding of Instructions and Data to Memory
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data1: dw 32
  … 
start: lw r1,0(data1)
 jal checkit
loop: addi   r1, r1, -1
 bnz r1, loop
  …
checkit: …

Process View of Memory

0x0300 00000020
   …    …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical View

of Memory

Assume 4 Byte words
0x300 = 4 x 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000



Binding of Instructions and Data to Memory
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data1: dw 32
  … 
start: lw r1,0(data1)
 jal checkit
loop: addi   r1, r1, -1
 bnz r1, loop
  …
checkit: …

Process View of Memory

0x0300 00000020
   …    …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical View

of Memory

Physical Memory

0x0000

0x0300 00000020

0x0900 8C2000C0

0C000280

2021FFFF

14200242

0xFFFF



Second copy of the program
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data1: dw 32
  … 
start: lw r1,0(data1)
 jal checkit
loop: addi   r1, r1, -1
 bnz r1, loop
  …
checkit: …

Process View of Memory

0x0300 00000020
   …    …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical View

of Memory

Physical Memory

0x0000

0x0900 App X

0xFFFF

What do we do with the addresses?  Need translation!



Second copy of the program
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data1: dw 32
  … 
start: lw r1,0(data1)
 jal checkit
loop: addi   r1, r1, -1
 bnz r1, loop
  …
checkit: …

Process View of Memory

0x1300 00000020
   …    …
0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
 …
0x1A00

Physical View

of Memory

Physical Memory

0x0000

0x0900 App X

0x1300 00000020

0x1900 8C2004C0

0C000680

2021FFFF

14200642

0xFFFF

• One of many possible translations!

• When does translation take place?

• Compile time, Link/Load time, or Execution time?



So Far

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation
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General Address translation (Review)

• Address Space: All the addresses and state a process 

can touch

– Each process and kernel have different address spaces

• Therefore → Two views of memory:

– View from the CPU (what program sees, virtual memory)

– View from memory (physical memory)

– Translation box (MMU) converts between the two views

• Translation makes it much easier to implement protection

– If Job A cannot even gain access to Job B’s data, no way for A to 

adversely affect B

• With translation, every program can be linked/loaded into 

the same region of user address space
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General Address translation (Review)
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MMU

Virtual

Addresses

Physical

Addresses

Untranslated Read or Write



Simple Example: Base and Bounds (CRAY-1)

• Base + limit for dynamic address translation (runtime) 
– Alter address of every load/store by adding “base”

– Error if address > limit

• Gives program illusion it is running alone, with memory 

starting at 0

– Program gets continuous region of memory

– Addresses in program do not need relocation when program 

placed in different region of DRAM
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Issues with Simple B&B Method
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• Fragmentation problem

– Not every process is the same size

– Over time, memory space becomes 

fragmented

• Missing support for sparse address 

space

– Would like to have multiple chunks 

per program

– Ex: Code, Data, Stack

• Hard to do inter-process sharing

– Want to share code segments 

when possible

– Want to share memory between 

processes

– Helped by providing multiple 

segments per process

Process 6

Process 5

Process 2

OS

Process 6

Process 5

OS

Process 6

Process 5

Process 9

OS

Process 6

Process 9

Process 10

OS

Process 11



More Flexible Segmentation

• Logical View: Multiple 

separate segments

– Typical: Code, Data, 

Stack

– Others: memory 

sharing, etc

• Each segment is given 

region of contiguous 

memory

– Has a base and limit

– Can reside anywhere 

in physical memory
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Subroutine

Stack

sqrt

Main program

Symbol table

Logical Addresses



More Flexible Segmentation
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Subroutine

Stack

sqrt

Main program

Symbol table

Logical Addresses

1

2

5

3

4

User view

of memory space

1

2

3

4

5

Physical memory space



80386 Special Registers
Typical Segment Register 

Current Priority is RPL of 

Code Segment (CS)

4 Jan 2026 SE 317: Operating Systems 58

Intel x86 Special Registers

15 3 2 1 0

Index TI RPL

• RPL: Requestor Privilege 

Level

• TI: Table Indicator

• 0 = GDT, 1=LDT

• Index: Index into table

• Protected memory segment 

selector



Ex: 4 Segments (16b addresses)
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Virtual Address Format

Seg Offset

15 14 13 0

Seg ID# Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

0x0000

0x4000

0x8000

0xC000

Virtual Address Space

0x0000

0x4000 Might be shared

0x4800

0x5C00 Space for other apps

0xF000 Shared with other apps

SegID=0

SegID=1

Physical Address Space



Implementation of Multi-Segment Model
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• Segment map resides in processor

– Segment number mapped into 

base/limit pair

– Base added to offset to generate 

physical address

– Error check catches offset out of 

range

• As many chunks of physical 
memory as entries
– Segment addressed by portion of 

virtual address

– However, could be included in 
instruction instead:

• x86 Example: mov [es:bx],ax. 

• What is V/N (valid / not valid)?
– Can mark segments as invalid; 

requires check as well

Seg# Offset

Virtual Address

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 N

Base5 Limit5 V

>
Offset

Error!

+
Physical 

Address

Check Valid

Error! No



Virtual versus Physical
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MMU

Virtual addresses

Read from

Virtual address

Translate via

Segment Table

Read from

Physical address

Read from
0x240

In: Segment 0
Base: 0x4000

Read from 
0x4240

Physical addresses



Running more programs than fit in memory: Swapping

Q: What if not all processes fit in memory?

A: Swapping: Extreme form of Context Switch

• To make room for next

process, some or all the 

previous process is moved to disk

• Greatly increases the cost of 

context switching

What else could we do?

• Keep only active portions of a 

process in memory

• Need finer granularity control over physical memory
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Swapping imagined
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In Memory Segment to load

Free = white blocks



Swapping imagined
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In Memory

Stored on diskFree = white blocks



Memory Layout for Linux 32-bit
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Problems with Segmentation

Must fit variable-sized 
chunks into physical 

memory

May move processes 
multiple times to fit 

everything

Limited options for 
swapping to disk

Fragmentation: wasted 
space

• External: free gaps between 
allocated chunks

• Internal: don’t need all memory 
within allocated chunks
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Image source: http://imgur.com/OFEy7



Conclusion

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation
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