Starvation and Deadlock,
Memory and Segments

4 January 2026
Lecture 10

Slides adapted from John Kubiatowicz (UC Berkeley)

4 Jan 2026 SE 317: Operating Systems

Concept Review

Round Robin Priority

First Come First | [(RR) scheduling

Scheduler S . o .
erve » Scheduling * Priority inversion
quantum

Measurements

* Response time .
Starvation - Average wait time Shortest Job First Shorﬁfﬁgﬁ{g&t"m”g

» Average completion
time

Lottery Scheduling

Multi-level feedback

O(1)

CFS
* Virtual Runtime

4 Jan 2026

SE 317: Operating Systems

Topics for Today

o Starvation and Deadlock

« Address Spaces and Segmentation
— Loading and Translating
— Segments
— Fragmentation

4 Jan 2026 SE 317: Operating Systems

Today’'s concepts

Starvation vs DEADLOCK(\;\

|
- Starvation: Thread waits indefinitely bézgﬂj-%

— Example: Low-priority thread waiting for resources
constantly in use by high-priority threads

« Deadlock: Circular waiting for resources

— Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

 Deadlock = Starvation but not vice versa

— Starvation can end (but doesn’t have to)
— Deadlock can’t end without external intervention

4 Jan 2026 SE 317: Operating Systems 5

e e\ Srew o R s

B %00IPeapAiiopIO0IPEaP/SaY/ENS/NPS"NA"60 1 SO/ P10 abew |

\

DEADLOX Graph

Thread

A
Owned by Wait for
4 \‘ ‘/

Res 1 Res 2

\ /. .\ J
Wait for Owned by
Thread

B

\

4 Jan 2026 SE 317: Operating Systems

Four requirements for Deadlock

Mutual exclusion

Only one thread
at a time can
use a resource.

Hold and wait

Thread holding
at least one
resource is

waiting to
acquire
additional
resources held
by other threads

No preemption

Resources are
released only
voluntarily by
the thread
holding the
resource, after
thread is
finished with it

Circular wait

There exists a
set {Ty, ..., T,} of
waiting threads

T,is waiting for a
resource that is
held by T,

T, is waiting for
a resource that
is held by T;

T,, is waiting for
a resource that
Is held by T;

4 Jan 2026

SE 317: Operating Systems

Occasional Deadlock

Deadlock not always deterministic: Example of two mutexes:

Thread A Thread B
X.P(); y.P();
y.P(); X.P();
y.-V(); X.V();
X.V(); y.V();

Deadlock won't always happen with this code
— Have to have exactly the right timing (“wrong” timing?)

— S0 you release a piece of software, and you tested it, and there it is,
controlling a humus making machine...

Deadlocks occur with multiple resources

— Means you can’t decompose the problem

— Can't solve deadlock for each resource independently
Example: System with two disk drives and two threads
— Each thread needs two disk drives to function

— Each thread gets one disk and waits for another one

4 Jan 2026 SE 317: Operating Systems

Deadlock Examples

Grab 2

_

resources

)

Routing
and
Travel

_ J

Deadlock

r

_

Multi-
shared

~N

resources

J

4 Jan 2026

SE 317: Operating Systems

10

One Lane Bridge Crossing

SUOWIWOY eIPBWNIAA BIA [(0°g/es-Ag/sasual|/Bio suowwodaAleald//:-dny) 0°c VS-Ag D91 (Hom umQ) 1nudip Ag

11

SE 317: Operating Systems

4 Jan 2026

One Lane Bridge Crossing

Each segment of road is a
resource

« Car must own the segment under it

* Must acquire segment that it is
moving into

For bridge: Must acquire both
halves

« Traffic only in one direction at a
time

* Problem occurs when two cars in
opposite directions on bridge: each
acquires one segment and needs
next

If a deadlock occurs, it can
be resolved if one car backs
up (preempt resources and
rollback)

» Several cars may have to be
backed up

Starvation is possible

» East-going traffic really fast = no
one goes west

4 Jan 2026

SE 317: Operating Systems 12

Deadlock

, You Back

Back up! up!

Ol e I e A

4 Jan 2026 SE 317: Operating Systems 13

Trains (Wormhole-Routed Network)

* Circular dependency (Deadlock!)
— Each train wants to turn right
— Blocked by other trains

%
i

¥

CMOWWTWTWY
LINININ IS I S
AN A% AN LN AN (N
VNN
SINANININ NS
SOV

WY (|

LANININ AJ S

COWEWIWTWWTY

L, N N, (N - 1
CNCNCSKE 1Y

AN AN AN AN, AN} N

4 Jan 2026 SE 317: Operating Systems

RN
LN

Trains (Wormhole-Routed Network)

Circular dependency (Deadlock!)
— Similar problem to multiprocessor networks

* Fix? Imagine grid extends in all four
directions
— How can we prevent circular dependency?

4 Jan 2026 SE 317: Operating Systems 15

Dining Students Problem

Five chopsticks/Five students

(really cheap restaurant)

— Free-for all: Student will grab any one they
can

— Need two chopsticks to eat
What if all grab at same time?

S =
— Deadlock! @
How to fix deadlock? @ O O

— Make one of them give up a chopstick (!)
— Eventually everyone will get chance to eat

How to prevent deadlock?

4 Jan 2026 SE 317: Operating Systems

16

Picturing deadlock can
help us understand it
better...

4 Jan 2026 SE 317: Operating Systems

Resource-Allocation Graph

« System Model Legend
— Asetof Threads Ty, T,, ..., T,

— Resource types R, R,, ..., Ry,
CPU cycles, memory space, I/0O devices Ry R,
— Each resource type R; has WW; instances. ® 00
— Each thread utilizes a resource as follows:
e Request() / Use() / Release()

* Resource-Allocation Graph:

— V is partitioned into two types:

e T ={T;,T,,..,T,} the set of threads in the system.
e R ={R{,R,,...,R,} the set of resource types in system
— Request Edge — Directed edge T; — R;

— Assignment Edge — Directed edge R; — T;

4 Jan 2026 SE 317: Operating Systems 18

Resource Allocation Graph Examples

Request Edge — Directed edge T; — R;
Assignment Edge — Directed edge R; — T;

R1 Rz R1 RZ

‘Ry QR:d ‘ROV oRo40

Simple Resource Allocation Allocation Graph with
Graph Deadlock

4 Jan 2026 SE 317: Operating Systems

Resource Allocation Graph Examples

Request Edge — Directed edge T; — R;
Assignment Edge — Directed edge R; — T;

R;
9
%4

Allocation Graph with Cycle
But No Deadlock

4 Jan 2026 SE 317: Operating Systems

20

Methods for Handling Deadlock

Allow system to enter Ensure that system will
deadlock and then recover never enter a deadlock

» Requires deadlock detection * Need to monitor all lock
algorithm acquisitions

« Some technique for forcibly » Selectively deny those that
preempting resources and/or might lead to deadlock

terminating tasks

Ignore the problem and
What, Me Worry? pretend that deadlocks
never occur in the system

» Used by most operating systems,
including UNIX

r.jpeg,

k0.pinimg.com/originals/d4/c6/ea/d4c6eale2d387adadf284ac846b05090.jpg

. http://www.besthackingtricks.com/wp-content/uploads/2015/08/Recovel
che-a

https://s-media-ca

Image sources

4 Jan 2026 SE 317: Operating Systems

21

Deadlock Detection Algorithm

* Only one of each type of resource = look for loops

* More General Deadlock Detection Algorithm

— Let [X] represent an m-ary vector of non-negative integers
(quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,]: Current requests from thread X
[Alloc,]: Current resources held by thread X

« See if tasks can eventually terminate on their own

4 Jan 2026 SE 317: Operating Systems 22

Deadlock Detection Algorithm

[Avail] = [FreeResources] R,
Add all nodes to UNFINISHED 0 @
do {
done = true
foreach node in UNFINISHED {
if ([Request, 4] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.4.]
done = false
}
}
} until(done)

* Nodes left in UNFINISHED = deadlocked

4 Jan 2026 SE 317: Operating Systems 23

What to do when detect deadlock?

Terminate thread Preempt resources

Force it to give up resources Without killing off thread
* Inbridge example: Godzilla . Tgke away resources

picks up a car, hurls it into :
the river. Deadlock solved! from thread temporarily

Excuse me,
may I borrow your
pants for five
minutes?

- Expel a dining student (or * Doesn't always fit with
tell him there’s free beer semantics of computation
elsewhere) |

* Not always possible
— killing a thread
holding a mutex
leaves the world
iInconsistent

. http://www.aperfectworld.org/05202.html |

| Image source

TERMINATOR

4 Jan 2026 SE 317: Operating Systems "

What to do when detect deadlock?

Roll back None of the above
Undo actions of deadlocked « Many operating systems
threads

use other options
e Hit the rewind button on

TiVo, pretend last few
minutes never happened

* For bridge example, make
one car roll backwards (may
require others behind him)

« Common technique in
databases (transactions)

 If you restart in exactly the
same way, may reenter
deadlock once again

: Walmart |

| Image source

4 Jan 2026 SE 317: Operating Systems 25

Techniques for Preventing Deadlock

INFINITE,
C>;?,,,,,m, No Sharing of resources

* Include enough resources » Totally independent
threads
so that no one ever runs out
of resources. Doesn’t have
to be infinite, just large

* Give illusion of infinite
resources (ex. virtual
memory)

 Examples:

— Ayalon Fwy with 12,000 lanes.
Never wait!

— Infinite disk space (not realistic
yet?)

* Not very realistic

DONT TREAD ON ME

By Lexicon, Vikrum (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html),

CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)

or CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

4 Jan 2026 SE 317: Operating Systems

N
(o))

Techniques for Preventing Deadlock

| Image source: http://images.myparkingsign.com/img/Ig/K/Fire-Zone-No-Parking-Sign-K-4442.gif |

FIRE ZONE

PARKING

NO

Don’t allow waiting | xo Request Ahead Q‘é{%
How the phone company avoids Make all threads request everything
deadlock they’ll need at the beginning.

— Call to your Mom in Haifa, works « Problem: Predicting future is hard,
its way through the phone lines, tend to over-estimate resources
but if blocked get busy signal.

Technique used in Ethernet and
some multiprocessor nets Example:

— Everyone speaks at once. On * |f need 2 chopsticks, request both

collision, back off and retry at same time
Inefficient, since need to retry « Don’t leave home until we know

— Consider: Driving to Tel Aviv;
when hit traffic jam, suddenly

you're transported back home and want to go; only one car on

told to retry!

Nno one is using any intersection
between here and where you

Ayalon Fwy at a time

Image source: http://ralphies.com/assets/images/order-before.jpg |

4 Jan 2026

SE 317: Operating Systems 27

Techniques for Preventing Deadlock

ndabout-sign.jpg |

: http://www.drivingtesttips.biz/wp-content/uploads/2014/05/mini-rou

| Image source

Ordering @ Recall: Dimension Ordering

Force all threads to request

resources in a particular order i

preventing any cyclic use of

resources Jm C) m,

* Thus, preventing deadlock ?

Example (x.P, y.P, z.P,..)

« Make tasks request disk, * Force ordering of
then memory, then... channels (tracks)

« Keep from deadlock on « Protocol: Always go east-
freeways around Tel Aviv by west first, then north-
requiring everyone to go south
clockwise « XthenY

4 Jan 2026 SE 317: Operating Systems 28

Trains (Wormhole-Routed Network)

Circular dependency (Deadlock!)
— Similar problem to multiprocessor networks

* Fix”? Imagine grid extends in all four
directions

— Force ordering of channels (tracks)
 Protocol: Always go east-west first, then north-south

— “dimension ordering” (X then Y)

4 Jan 2026 SE 317: Operating Systems 29

Dimension Ordering

I

\.J

VY

L

N

L/

VY

./

VY

S

Ve

\,J

Forbidden

VENY

VENY

TN

N

L/

VEaY

./

VA

./

)

L

Vi

./

\J

VY

\J

\J

\/

\/

VEaY

\/

I

\J

N

./

Ve

\J

Ve

L/

VY

./

Y

\J

\J

VY

L/

Vi

\J

Vi

S

Vi

\J

VY

LS

Ve

\J

Vi

L/

30

SE 317: Operating Systems

4 Jan 2026

Another Idea: Accounting

 First Idea:
— Thread t states maximum resource needs in advance

— System allows thread t to proceed if:
(|Avail] — [Request;] = Max) remaining that might be
needed by any thread

Li’? y| s_ir? y| s_ir? y|
BT (&BT | (&5°
| may NV XV NV,

need 3

4 Jan 2026 SE 317: Operating Systems 31

Banker's algorithm (less conservative):

* Allocate resources dynamically

— Evaluate each request and grant if some ordering of threads is still
deadlock free afterward

— Technique: Pretend each request is granted, then run deadlock
detection algorithm, substituting
([Max, 401 — [Alloc,pge] < [Avail]) for ([Request,y,q0] < [Avail])
Grant request if result is deadlock free (conservative!)

— Keeps system in a safe state, i.e. there exists a sequence
{T,,T,, ..., T,} with T; requesting all remaining resources, finishing,
then T, requesting all remaining resources, etc..

 Algorithm allows the sum of maximum resource needs of
all current threads to be greater than total resources

4 Jan 2026 SE 317: Operating Systems 32

Banking Example 1

Holding: 3

Holding: 1
+*

- Give 1

Request 1

i o8 ht
i\

il

Request 2

4 Jan 2026

SE 317: Operating Systems 33

Banking Example 2

Holding: 2

/ o \

Z

Request 2

4 Jan 2026 SE 317: Operating Systems 34

Banker's Algorithm Example

| |W1Y°S8119YdU0}EI8Y-S8UO-papuUBY-paIpuny/z L/800g/wod-1odsbolq AbojoyiAwb,/:dny :e01nog abew |

Banker’s algorithm with dining students

- Safe (won’t cause deadlock) if when you
try to grab chopstick either:
1. Not the last chopstick

2. Is the last chopstick but someone will have
two afterwards

« What if k-handed students? Don’t allow
if:

— It's the last one, no one would have k

— It's 2nd to last, and no one would have k — 1
— It's 3 to last, and no one would have k — 2
— efc...

4 Jan 2026 SE 317: Operating Systems

So Far

o Starvation and Deadlock

« Address Spaces and Segmentation
— Loading and Translating
— Segments
— Fragmentation

4 Jan 2026 SE 317: Operating Systems

36

Virtualizing Resources

* Physical Reality: Different Processes/Threads share the
same hardware
— Need to multiplex CPU (Just finished: scheduling)
— Need to multiplex use of Memory (Today)

« Why worry about memory sharing?

— The complete working state of a process and/or kernel is defined
by its data in memory (and registers)

— Consequently, cannot just let different threads of control use the
same memory

» Physics: Two different pieces of data cannot occupy the same
locations in memory

— Probably don’t want different threads to even have access to each

other’'s memory (protection)

4 Jan 2026 SE 317: Operating Systems 37

Important Aspects of Memory Multiplexing

Process Process

Translation Controlled
a—>b Overlap
Protection
o,

4 Jan 2026 SE 317: Operating Systems

38

Translation: a = b

Ability to translate
accesses from one
address space (virtual)
to a different one
(physical)

When translation
exists, processor uses
virtual addresses
physical memory uses
physical addresses

overlap

programs

Side effects:

e Can be used to avoid

« Can be used to give
uniform view of memory to

4 Jan 2026

SE 317: Operating Systems 39

Controlled Overlap

« Separate state of threads should not collide in physical
memory.
— Unexpected overlap causes chaos!

« Want to be able to overlap when desired for
communication
— Also debugging...

4 Jan 2026 SE 317: Operating Systems

40

Protection

Prevent access to private memory of other processes

Different pages of memory can be given special behavior

(Read Only, Invisible to user programs, etc).
Read

only

9000000000 00C

Kernel data protected from User programs

Programs protected from themselves

4 Jan 2026 SE 317: Operating Systems 41

So Far

o Starvation and Deadlock

« Address Spaces and Segmentation
— Loading and Translating
— Segments
— Fragmentation

4 Jan 2026 SE 317: Operating Systems

42

Recall: Loading

eleq
+ SUOIONJSU|

Threads || Address Spaces || Files

Processes || Sockets

Windows

Software OS Hardware Virtualization
ISA
Hardware
Protection
= Memo Boundary
rocessor ey i .
r==p Network Displays
I — i
/ i W—
I V<
(}ntroller €
I

Input Devices

4 Jan 2026

SE 317: Operating Systems

43

Recall a bit of the old days =
Relocating loaders

4 Jan 2026 SE 317: Operating Systems 44

Multi-step Processing of a Program for Execution

* Preparation of a program
for execution involves

components at:
— Compile time (ex. gcc)
— Link/Load time (UNIX 1d does
link)
— Execution time (ex. dynamic
libs)
 Addresses can be bound
to final values anywhere
In this path
— Depends on hardware support

— Also depends on operating
system

other
object
modules

system
library

dynamicall
loaded
system
library

dynamic
linking

source
program

compiler or
assembler

compile
time

object

module

linkage
editor

load
module

loader

h

in-memory
binary
memory
image

. load
time

executior
> time (run
time)

4 Jan 2026 SE 317: Operating Systems

45

Multi-step Processing of a Program for Execution

* Dynamic Libraries

— Linking postponed until
execution

— Small piece of code, stub,
used to locate appropriate
memory-resident library
routine

— Stub replaces itself with the
address of the routine, and
executes routine

other
object
modules

system
library

dynamicall
loaded
system
library

dynamic
linking

source
program

compiler or
assembler

compile
time

object

module

linkage
editor

load
module

loader

h

in-memory
binary
memory
image

. load
time

executior
> time (run
time)

4 Jan 2026

SE 317: Operating Systems

46

Binding of Instructions and Data to Memory

Process View of Memory

//;;talz dw

start: lw
jal

loop: addi
bnz

\\iheckit: -

2

rl,0(datal)

Physical View
of Memory

//;%@306 @@OOOGZé\\\
\

0x0900 8(C2000C0

/

checkit
rl, rl, -1

0x0904 0000280

rl, loop

/

4 0x0908 2021FFFF
0x090C 14200242

@m@AO@
\Z)

Assume 4 Byte words
Ox300 = 4 x 0x0CO
Ox0CO = 00VPO 1100 0000
Ox300 = 0011 0000 0000

4 Jan 2026

SE 317: Operating Systems

47

Binding of Instructions and Data to Memory

Physical Memory

Physical View 0000
Process View of Memory of Memory
//;;talz dw 32 \\\ //;X939Q&9§f????é\\ 0x0300 | 00000026
start: 1w rl,0(datal) N 0x0900 8(2000C0
jal checkit 0x0904 0C000280 0x0900 |8C2000C0
loop: addi ri1, rl, -1 /] Ox0908 2021FFFF 0C000280
0x090C 14200242
bnz "1, loop 2021FFFF
\\i?eckit: . /// \\?%OA@@ /// 14200242

OXFFFF

4 Jan 2026 SE 317: Operating Systems 48

Second copy of the program

Physical Memory

Physical View
Process View of Memory of Memory

//;;tal: dw 32 \\\ //;;@3@@ @@@@@GZA\\\
\

Ox0900 8C2000C0 0x0900 | App X

0x0000

start: lw rl,0(datal)

jal checkit N oxe004 ocoeo2se
loop: addi rl, ri, -1 -7 (©x0908 2021FFFF
bnz ri, loop 0x090C 14200242

\chec ST . \e;eAee y

OXFFFF

What do we do with the addresses? Need translation!

4 Jan 2026 SE 317: Operating Systems 49

Second copy of the program

Physical Memory

Physical View ~ ©9x0000

Process View of Memory of Memory
/datal: dw 32 \ /@x13@@w29\ 0x0900 | App X
start: 1w rl,0(datal) N 0x1900 8C2004C0O
jal checkit 0x1904 0CPP680
loop: addi ri1, rl, -1 /] Ox1908 2021FFFF
bnz rl, loop ©x190C 14200642 ox13060 | 00060020
\checkit: / \@xlA@@ / Ox1900 | 8C2004CH
0COLO680
* One of many possible translations! 2021FFFF
* When does translation take place? 14200642

« Compile time, Link/Load time, or Execution time?

OXFFFF

4 Jan 2026 SE 317: Operating Systems 50

So Far

o Starvation and Deadlock

« Address Spaces and Segmentation
— Loading and Translating
— Segments
— Fragmentation

4 Jan 2026 SE 317: Operating Systems

51

General Address translation (Review)

Address Space: All the addresses and state a process
can touch
— Each process and kernel have different address spaces

Therefore - Two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)
— Translation box (MMU) converts between the two views

Translation makes it much easier to implement protection

— If Job A cannot even gain access to Job B’s data, no way for A to
adversely affect B

With translation, every program can be linked/loaded into
the same region of user address space

4 Jan 2026 SE 317: Operating Systems 52

General Address translation (Review)

Virtual Physical
Addresses Addresses

MMU

1000
v

Untranslated Read or Write

4 Jan 2026 SE 317: Operating Systems 53

Simple Example: Base and Bounds (CRAY-1)

« Base + limit for dynamic address translation (runtime)
— Alter address of every load/store by adding “base”

— Error if address > limit

» Gives program illusion it is running alone, with memory
starting at ©
— Program gets continuous region of memory

— Addresses in program do not need relocation when program
placed in different region of DRAM

Virtual Base

Address

CPU

Physical
Address

No: Error!

By Clemens PFEIFFER - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1441453 |

4 Jan 2026 SE 317: Operating Systems 54

Issues with Simple B&B Method

Process 6

Process 5

Process 2

OS

=)

Process 6

Process 5

OS

=)

« Fragmentation problem

— Not every process is the same size

— Qver time, memory space becomes
fragmented

« Missing support for sparse address

space

Process 6

Process 5

Process 9

=)

OS

— Would like to have multiple chunks
per program

— Ex: Code, Data, Stack

Process 6

<]
Process 9 Process 11
Process 10

« — |
OS

when possible

processes

Hard to do inter-process sharing
— Want to share code segments

— Want to share memory between

— Helped by providing multiple

segments per process

4 Jan 2026

SE 317: Operating Systems

95

More Flexible Segmentation

* Logical View: Multiple
separate segments

— Typical: Code, Data,
Stack

— Others: memory
sharing, etc
 Each segment is given
region of contiguous
memory
— Has a base and limit

— Can reside anywhere
In physical memory

Subroutine

Stack

Main program

Symbol table

sqrt

Logical Addresses

4 Jan 2026 SE 317: Operating Systems

56

More Flexible Segmentation

Subroutine

Stack Main program
3 Symbol table
User view sqrt
of memory space
4 Logical Addresses
3)

Physical memory space

4 Jan 2026 SE 317: Operating Systems 57

Intel x86 Special Registers

: : Typical Segment Register
IR
80386 Sprla egisters Current Priority is RPL of

Code Seg: Diata Seg. COde Segment (CS)

15 Cs o 15 L= o
Stack Seg EtiaSeg 19 32 10
L L Index Tl | RPL
Exlla Seg. Exlta. Seg
P - « RPL: Requestor Privilege
x| Y82 |9|RE|E|5 | |x|8|x|E|x|¢ Level
15 4+ 13121112 2 & 7 & 5 4 3 2 1 0O .
T ——— Tl Table Indicator
G T[S |5 |P[E

3130 s 43210 31 0 Flags e Q= GDT, 1=LDT

Page Fanlt Page [l'cd.cl}l ot

Cinel K | cR2 B Regoil | Dead| CR |ndex: Index into table

31 0 70
PG=Paging Enable %fﬁﬁ";ﬁdm
ET—Eumalation Ty LOPL=L/0 Privilege Level
FEEﬁ_'[_TELrlli -Ig?ﬂﬁgplmsm SE£ l'ﬂc:w EI 4
SRR R * Protected memory segment
SF=5& gh Ela g I t
= selector
PE=Parity FI ag
CE=Carry Flag

4 Jan 2026 SE 317: Operating Systems 58

Ex: 4 Segments (16b addresses)

Virtual Address Format

Seg ID# Base Limit
0 (code) Ox4000 | Ox0800
1 (data) Ox4800 | 0x1400

Seg | Offset
15 14 13 0
Ox0000 SeglD=0
_ Ox0000

Ox4000 SeglD=1

OXA000
8000 - Ox4800

Ox5C00
OxC000

Virtual Address Space

2 (shared) | 0xFO00 | Ox1000

3 (stack) | ©0x0000 | ©x3000

Might be shared

Space for other apps

OxF000 - Shared with other apps
Physical Address Space

4 Jan 2026

SE 317: Operating Systems

59

Implementation of Multi-Segment Model

Virtual Address

Seg# | Offset

« Segment map resides in processor °
— Segment number mapped into

base/limit pair

— Base added to offset to generate

physical address

— Error check catches offset out of

ol Error!
Base® |Limite |V
Basel |Limitl |V, Physical
s| Base2 "'I_':L"ft'Z"t\'/' Address
Base3 | Limit3 (N \ :
Base4 |Limit4 |N Check Valid
Base5 |Limit5 |V Error! (€ No

As many chunks of physical

memory as entries

— Segment addressed by portion of

virtual address

— However, could be included in

instruction instead:

« x86 Example: mov [es:bx],ax.

range Whatis V/N (valid / not valid)?
— Can mark segments as invalid;
requires check as well
4 Jan 2026 SE 317: Operating Systems 60

Virtual versus Physical

Virtual addresses | | Physical addresses

inteie ‘

R — MMU

ey

|
|
Read from | | Translate via | |Read from
Virtual address | Segment Table | Physical address
Read from | | In: Segment o | Read from
0x240 | Base: 0x4000 | 0x4240

4 Jan 2026 SE 317: Operating Systems 61

Running more programs than fit in memory: Swapping

Q: What if not all processes fit in memory?
A: Swapping: Extreme form of Context Switch

* To make room for next —
process, some or all the opsrati]
previous process is moved to disk o

« Greatly increases the cost of . @m&[
context switching B swapin process P,

What else could we do? S u

« Keep only active portions of a o backing store

proceSS |n memOry main memory
* Need finer granularity control over physical memory

4 Jan 2026 SE 317: Operating Systems 62

Swapping imagined

In Memory Segment to load

F

Free = white blocks

4 Jan 2026 SE 317: Operating Systems 63

Swapping imagined

In Memory

Free = white blocks Stored on disk

4 Jan 2026 SE 317: Operating Systems 64

~ Memory Layout for Linux 32-I:L

—_— | Kernel space —
1GE = User code CANNOT read from nor write to these addresses, 5
lx_ doing so results in a Segmentation Fault @xCABeReRa == TASK SIZE §
i [}
- F Random stack offset g
L [&]
©
Stack (grows down)] @
! = RLIMIT_STACK (e.g., 8MB) é
3
< s
:-, Random mmap offset @':
Memory Mapping Segment E
File mappings (including dynamic libraries) and anonymous nf.»
mappings. Example: /lib/libc.so 5
(2]
E
<
o)
%]
£
S
36B -/ program break s
A Tj brk s
Ei
Heap start_brk ;
:-‘~ Random brk offset §
g [
B5S segment g
Uninitizlized static variables, filled with zeros. L
Example: static char *userName;
Data segment end_data
Static variables initialized by the programmer.
Example: static char *gonzo = "God’'s own prototype”; start_data
e Text segment (ELF) end_code
4. Stores the binary image of the process (e.g., /bin/gonzo) BxBRA480E0 65
p . a

Problems with Segmentation

Must fit variable-sized
chunks into physical
memory

May move processes
multiple times to fit
everything

Limited options for
swapping to disk

Fragmentation: wasted
space

- External: free gaps between
allocated chunks

* Internal: don’t need all memory
within allocated chunks

4 Jan 2026 SE 317: Operating Systems 66

4 Jan 2026 SE 317: Operating Systems

Conclusion

o Starvation and Deadlock

« Address Spaces and Segmentation
— Loading and Translating
— Segments
— Fragmentation

4 Jan 2026 SE 317: Operating Systems

69

	Default Section
	Slide 1: Starvation and Deadlock, Memory and Segments 4 January 2026 Lecture 10
	Slide 2: Concept Review
	Slide 3: Topics for Today
	Slide 4: Today’s concepts

	Starvation and Deadlock
	Slide 5: Starvation vs
	Slide 6
	Slide 7: Graph
	Slide 8: Four requirements for Deadlock
	Slide 9: Occasional Deadlock
	Slide 10: Deadlock Examples
	Slide 11: One Lane Bridge Crossing
	Slide 12: One Lane Bridge Crossing
	Slide 13: Deadlock
	Slide 14: Trains (Wormhole-Routed Network)
	Slide 15: Trains (Wormhole-Routed Network)
	Slide 16: Dining Students Problem
	Slide 17
	Slide 18: Resource-Allocation Graph
	Slide 19: Resource Allocation Graph Examples
	Slide 20: Resource Allocation Graph Examples
	Slide 21: Methods for Handling Deadlock
	Slide 22: Deadlock Detection Algorithm
	Slide 23: Deadlock Detection Algorithm
	Slide 24: What to do when detect deadlock?
	Slide 25: What to do when detect deadlock?
	Slide 26: Techniques for Preventing Deadlock
	Slide 27: Techniques for Preventing Deadlock
	Slide 28: Techniques for Preventing Deadlock
	Slide 29: Trains (Wormhole-Routed Network)
	Slide 30: Dimension Ordering
	Slide 31: Another Idea: Accounting
	Slide 32: Banker’s algorithm (less conservative):
	Slide 33: Banking Example 1
	Slide 34: Banking Example 2
	Slide 35: Banker’s Algorithm Example

	Virtualizing Resources
	Slide 36: So Far
	Slide 37: Virtualizing Resources
	Slide 38: Important Aspects of Memory Multiplexing
	Slide 39: Translation: a. goes to b
	Slide 40: Controlled Overlap
	Slide 41: Protection

	Loading
	Slide 42: So Far
	Slide 43: Recall: Loading
	Slide 44
	Slide 45: Multi-step Processing of a Program for Execution
	Slide 46: Multi-step Processing of a Program for Execution
	Slide 47: Binding of Instructions and Data to Memory
	Slide 48: Binding of Instructions and Data to Memory
	Slide 49: Second copy of the program
	Slide 50: Second copy of the program

	Segments
	Slide 51: So Far
	Slide 52: General Address translation (Review)
	Slide 53: General Address translation (Review)
	Slide 54: Simple Example: Base and Bounds (CRAY-1)
	Slide 55: Issues with Simple B&B Method
	Slide 56: More Flexible Segmentation
	Slide 57: More Flexible Segmentation
	Slide 58: Intel x86 Special Registers
	Slide 59: Ex: 4 Segments (16b addresses)
	Slide 60: Implementation of Multi-Segment Model
	Slide 61: Virtual versus Physical
	Slide 62: Running more programs than fit in memory: Swapping
	Slide 63: Swapping imagined
	Slide 64: Swapping imagined
	Slide 65: Memory Layout for Linux 32-bit
	Slide 66: Problems with Segmentation
	Slide 67
	Slide 68
	Slide 69: Conclusion

