
4 Jan 2026 SE 317: Operating Systems 1

Starvation and Deadlock,

Memory and Segments

4 January 2026

Lecture 10

Slides adapted from John Kubiatowicz (UC Berkeley)

Concept Review

Scheduler
First Come First

Serve

Round Robin
(RR)

• Scheduling
quantum

Priority
scheduling

• Priority inversion

Starvation

Measurements

• Response time

• Average wait time

• Average completion
time

Shortest Job First
Shortest Remaining

Time First

Lottery Scheduling Multi-level feedback O(1)

CFS

• Virtual Runtime

4 Jan 2026 SE 317: Operating Systems 2

Topics for Today

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation

4 Jan 2026 SE 317: Operating Systems 3

Today’s concepts

4 Jan 2026 SE 317: Operating Systems 4

Starvation vs

• Starvation: Thread waits indefinitely

– Example: Low-priority thread waiting for resources

constantly in use by high-priority threads

• Deadlock: Circular waiting for resources

– Thread 𝐴 owns Res 1 and is waiting for Res 2

Thread 𝐵 owns Res 2 and is waiting for Res 1

• Deadlock  Starvation but not vice versa

– Starvation can end (but doesn’t have to)

– Deadlock can’t end without external intervention

4 Jan 2026 SE 317: Operating Systems 5

Im
a

g
e

 S
o

u
rc

e
:

h
tt

p
s
:/

/t
h

u
m

b
s
.d

re
a

m
s
ti
m

e
.c

o
m

/t
/v

e
c
to

r-
c
a

rt
o

o
n

-m
a

n
-c

ra
w

li
n

g
-d

e
s
e

rt
-f

o
u

n
d

-e
m

p
ty

-t
e

x
t-

d
o

o
d

le
-s

ti
c
k
m

a
n

-t
h

ir
s
ty

-m
id

d
le

-m
e

e
t-

s
ig

n
-8

7
9

6
9

8
5

3
.j
p

g

4 Jan 2026 SE 317: Operating Systems 6

Im
a
g
e
 C

re
d
it
:

h
tt

p
:/

/m
c
s
1
0
9
.b

u
.e

d
u
/s

it
e
/f

ile
s
/d

e
a
d
lo

c
k
/c

it
y
d
e
a
d
lo

c
k
.j
p

g

 Graph

Thread
A

Res 2

Thread
B

Res 1

4 Jan 2026 SE 317: Operating Systems 7

Wait for

Wait for Owned by

Owned by

Four requirements for Deadlock

Mutual exclusion

Only one thread
at a time can

use a resource.

Hold and wait

Thread holding
at least one
resource is
waiting to
acquire

additional
resources held

by other threads

No preemption

Resources are
released only
voluntarily by

the thread
holding the

resource, after
thread is

finished with it

Circular wait

There exists a
set 𝑇1, … , 𝑇𝑛 of
waiting threads

𝑇1is waiting for a
resource that is
held by 𝑇2

𝑇2 is waiting for
a resource that
is held by 𝑇3

…

𝑇𝑛 is waiting for
a resource that
is held by 𝑇1

4 Jan 2026 SE 317: Operating Systems 8

Occasional Deadlock
• Deadlock not always deterministic: Example of two mutexes:
 Thread A Thread B
 x.P(); y.P();

 y.P(); x.P();

 y.V(); x.V();

 x.V(); y.V();

• Deadlock won’t always happen with this code

– Have to have exactly the right timing (“wrong” timing?)

– So you release a piece of software, and you tested it, and there it is,
controlling a humus making machine…

• Deadlocks occur with multiple resources

– Means you can’t decompose the problem

– Can’t solve deadlock for each resource independently

• Example: System with two disk drives and two threads

– Each thread needs two disk drives to function

– Each thread gets one disk and waits for another one

4 Jan 2026 SE 317: Operating Systems 9

Deadlock Examples

Deadlock

Grab 2
resources

Routing
and

Travel
Multi-

shared
resources

4 Jan 2026 SE 317: Operating Systems 10

One Lane Bridge Crossing

4 Jan 2026 SE 317: Operating Systems 11

B
y
 Q

rp
n
u
t

(O
w

n
 w

o
rk

)
[C

C
 B

Y
-S

A
 3

.0
 (

h
tt

p
:/

/c
re

a
ti
v
e
c
o
m

m
o
n
s
.o

rg
/l
ic

e
n
s
e
s
/b

y
-s

a
/3

.0
)]

,
v
ia

 W
ik

im
e
d
ia

 C
o
m

m
o
n
s

One Lane Bridge Crossing

Each segment of road is a
resource

• Car must own the segment under it

• Must acquire segment that it is
moving into

For bridge: Must acquire both
halves

• Traffic only in one direction at a
time

• Problem occurs when two cars in
opposite directions on bridge: each
acquires one segment and needs
next

If a deadlock occurs, it can
be resolved if one car backs
up (preempt resources and
rollback)

• Several cars may have to be
backed up

Starvation is possible

• East-going traffic really fast  no
one goes west

4 Jan 2026 SE 317: Operating Systems 12

Deadlock

4 Jan 2026 SE 317: Operating Systems 13

Back

up!
You

Back up!

Trains (Wormhole-Routed Network)

4 Jan 2026 SE 317: Operating Systems 14

• Circular dependency (Deadlock!)
– Each train wants to turn right

– Blocked by other trains

Trains (Wormhole-Routed Network)

• Circular dependency (Deadlock!)
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four
directions
– How can we prevent circular dependency?

4 Jan 2026 SE 317: Operating Systems 15

Dining Students Problem

• Five chopsticks/Five students

(really cheap restaurant)
– Free-for all: Student will grab any one they

can

– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (!)

– Eventually everyone will get chance to eat

• How to prevent deadlock?

4 Jan 2026 SE 317: Operating Systems 16

Picturing deadlock can

help us understand it

better…

4 Jan 2026 SE 317: Operating Systems 17

Resource-Allocation Graph

• System Model

– A set of Threads 𝑇1, 𝑇2, … , 𝑇𝑛

– Resource types 𝑅1, 𝑅2, … , 𝑅𝑚

 CPU cycles, memory space, I/O devices

– Each resource type 𝑅𝑖 has 𝑊𝑖 instances.

– Each thread utilizes a resource as follows:

• Request() / Use() / Release()

• Resource-Allocation Graph:

– 𝑉 is partitioned into two types:

• 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} the set of threads in the system.

• 𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛} the set of resource types in system

– Request Edge – Directed edge 𝑇𝑖 → 𝑅𝑗

– Assignment Edge – Directed edge 𝑅𝑗 → 𝑇𝑖

4 Jan 2026 SE 317: Operating Systems 18

Legend
𝑇1 𝑇2

𝑅1 𝑅2

Request Edge – Directed edge 𝑇𝑖 → 𝑅𝑗

 Assignment Edge – Directed edge 𝑅𝑗 → 𝑇𝑖

4 Jan 2026 SE 317: Operating Systems 19

Resource Allocation Graph Examples

𝑇1 𝑇2

𝑅1 𝑅2

𝑅3 𝑅4

𝑇3

Simple Resource Allocation

Graph

𝑇1 𝑇2

𝑅1 𝑅2

𝑅3 𝑅4

𝑇3

Allocation Graph with

Deadlock

Request Edge – Directed edge 𝑇1 → 𝑅𝑗

 Assignment Edge – Directed edge 𝑅𝑗 → 𝑇𝑖

4 Jan 2026 SE 317: Operating Systems 20

Resource Allocation Graph Examples

Allocation Graph with Cycle

But No Deadlock

𝑇1 𝑇2

𝑅1

𝑇3 𝑇4

𝑅2

Methods for Handling Deadlock

4 Jan 2026 SE 317: Operating Systems 21

Im
a
g
e
 s

o
u
rc

e
s
:

h
tt
p
:/
/w

w
w

.b
e
s
th

a
c
k
in

g
tr

ic
k
s
.c

o
m

/w
p

-c
o
n

te
n
t/

u
p
lo

a
d
s
/2

0
1
5

/0
8

/R
e
c
o
v
e

r.
jp

e
g
,

h
tt
p
s
:/
/s

-m
e

d
ia

-c
a
c
h
e

-a
k
0

.p
in

im
g
.c

o
m

/o
ri
g
in

a
ls

/d
4

/c
6

/e
a

/d
4
c
6
e

a
0
e

2
d
3
8

7
a
d

a
d

f2
8
4

a
c
8

4
6
b
0

5
0
9

0
.j
p
g

Allow system to enter
deadlock and then recover

• Requires deadlock detection
algorithm

• Some technique for forcibly
preempting resources and/or
terminating tasks

Ensure that system will
never enter a deadlock

• Need to monitor all lock
acquisitions

• Selectively deny those that
might lead to deadlock

Ignore the problem and
pretend that deadlocks
never occur in the system

• Used by most operating systems,
including UNIX

Deadlock Detection Algorithm

• Only one of each type of resource  look for loops

• More General Deadlock Detection Algorithm

– Let [𝑋] represent an 𝑚-ary vector of non-negative integers

(quantities of resources of each type):

[FreeResources]: Current free resources each type

[RequestX]: Current requests from thread 𝑋

[AllocX]: Current resources held by thread 𝑋

• See if tasks can eventually terminate on their own

4 Jan 2026 SE 317: Operating Systems 22

Deadlock Detection Algorithm
[Avail] = [FreeResources]

Add all nodes to UNFINISHED

do {

 done = true

 foreach node in UNFINISHED {

 if ([Requestnode] <= [Avail]) {

 remove node from UNFINISHED

 [Avail] = [Avail] + [Allocnode]

 done = false

 }

 }

} until(done)

• Nodes left in UNFINISHED  deadlocked

4 Jan 2026 SE 317: Operating Systems 23

𝑇1 𝑇2

𝑅1

𝑇3 𝑇4

𝑅2

Terminate thread

Force it to give up resources

• In bridge example: Godzilla

picks up a car, hurls it into

the river. Deadlock solved!

• Expel a dining student (or

tell him there’s free beer

elsewhere)

• Not always possible

– killing a thread

holding a mutex

leaves the world

inconsistent

Preempt resources

Without killing off thread

• Take away resources

from thread temporarily

• Doesn’t always fit with

semantics of computation

4 Jan 2026 SE 317: Operating Systems 24

What to do when detect deadlock?

Im
a
g
e
 s

o
u
rc

e
:

h
tt

p
:/

/w
w

w
.a

p
e
rf

e
c
tw

o
rl
d

.o
rg

/0
5

2
0

2
.h

tm
l

Roll back

Undo actions of deadlocked
threads

• Hit the rewind button on
TiVo, pretend last few
minutes never happened

• For bridge example, make
one car roll backwards (may
require others behind him)

• Common technique in
databases (transactions)

• If you restart in exactly the
same way, may reenter
deadlock once again

None of the above

• Many operating systems

use other options

4 Jan 2026 SE 317: Operating Systems 25

What to do when detect deadlock?

Im
a
g
e
 s

o
u
rc

e
:

W
a
lm

a
rt

• Include enough resources

so that no one ever runs out

of resources. Doesn’t have

to be infinite, just large

• Give illusion of infinite

resources (ex. virtual

memory)

• Examples:

– Ayalon Fwy with 12,000 lanes.

Never wait!

– Infinite disk space (not realistic

yet?)

No Sharing of resources

• Totally independent
threads

• Not very realistic

4 Jan 2026 SE 317: Operating Systems 26

Techniques for Preventing Deadlock

B
y
 L

e
x
ic

o
n
,

V
ik

ru
m

 (
O

w
n
 w

o
rk

)
[G

F
D

L
 (

h
tt

p
:/

/w
w

w
.g

n
u
.o

rg
/c

o
p
y
le

ft
/f

d
l.
h
tm

l)
,

C
C

-B
Y

-S
A

-3
.0

 (
h
tt

p
:/

/c
re

a
ti
v
e
c
o
m

m
o

n
s
.o

rg
/l
ic

e
n
s
e
s
/b

y
-s

a
/3

.0
/)

o
r

C
C

 B
Y

-S
A

 2
.0

 (
h
tt

p
:/

/c
re

a
ti
v
e
c
o
m

m
o

n
s
.o

rg
/l
ic

e
n
s
e
s
/b

y
-s

a
/2

.0
)]

,
v
ia

 W
ik

im
e

d
ia

 C
o
m

m
o
n
s

Don’t allow waiting

• How the phone company avoids

deadlock

– Call to your Mom in Haifa, works

its way through the phone lines,

but if blocked get busy signal.

• Technique used in Ethernet and

some multiprocessor nets

– Everyone speaks at once. On

collision, back off and retry

• Inefficient, since need to retry

– Consider: Driving to Tel Aviv;

when hit traffic jam, suddenly

you’re transported back home and

told to retry!

Request Ahead

Make all threads request everything

they’ll need at the beginning.

• Problem: Predicting future is hard,

tend to over-estimate resources

Example:

• If need 2 chopsticks, request both

at same time

• Don’t leave home until we know

no one is using any intersection

between here and where you

want to go; only one car on

Ayalon Fwy at a time

4 Jan 2026 SE 317: Operating Systems 27

Techniques for Preventing Deadlock
Im

a
g
e
 s

o
u
rc

e
:

h
tt

p
:/

/i
m

a
g
e
s
.m

y
p
a
rk

in
g
s
ig

n
.c

o
m

/i
m

g
/l
g

/K
/F

ir
e

-Z
o

n
e
-N

o
-P

a
rk

in
g
-S

ig
n
-K

-4
4
4
2
.g

if

Im
a
g
e
 s

o
u
rc

e
:

h
tt

p
:/

/r
a
lp

h
ie

s
.c

o
m

/a
s
s
e
ts

/i
m

a
g
e
s
/o

rd
e
r-

b
e
fo

re
.j
p

g

Ordering

Force all threads to request
resources in a particular order
preventing any cyclic use of
resources

• Thus, preventing deadlock

Example (x.P, y.P, z.P,…)

• Make tasks request disk,
then memory, then…

• Keep from deadlock on
freeways around Tel Aviv by
requiring everyone to go
clockwise

Recall: Dimension Ordering

4 Jan 2026 SE 317: Operating Systems 28

Techniques for Preventing Deadlock
Im

a
g
e
 s

o
u
rc

e
:

h
tt

p
:/

/w
w

w
.d

ri
v
in

g
te

s
tt

ip
s
.b

iz
/w

p
-c

o
n
te

n
t/

u
p
lo

a
d
s
/2

0
1
4
/0

5
/m

in
i-

ro
u
n
d
a
b

o
u
t-

s
ig

n
.j
p

g

• Force ordering of
channels (tracks)

• Protocol: Always go east-
west first, then north-
south

• X then Y

Trains (Wormhole-Routed Network)

• Circular dependency (Deadlock!)
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four
directions
– Force ordering of channels (tracks)

• Protocol: Always go east-west first, then north-south

– “dimension ordering” (X then Y)

4 Jan 2026 SE 317: Operating Systems 29

Dimension Ordering

4 Jan 2026 SE 317: Operating Systems 30

Forbidden

Another Idea: Accounting

• First Idea:

– Thread 𝑡 states maximum resource needs in advance

– System allows thread 𝑡 to proceed if:

(Avail − 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑡 ≥ 𝑀𝑎𝑥) remaining that might be

needed by any thread

4 Jan 2026 SE 317: Operating Systems 31

I may

need 3

I may

need 3

I may

need 3

Banker’s algorithm (less conservative):

• Allocate resources dynamically

– Evaluate each request and grant if some ordering of threads is still

deadlock free afterward

– Technique: Pretend each request is granted, then run deadlock

detection algorithm, substituting

 (𝑀𝑎𝑥𝑛𝑜𝑑𝑒 − [𝐴𝑙𝑙𝑜𝑐𝑛𝑜𝑑𝑒] ≤ [𝐴𝑣𝑎𝑖𝑙]) for ([𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑜𝑑𝑒] ≤ [𝐴𝑣𝑎𝑖𝑙])
Grant request if result is deadlock free (conservative!)

– Keeps system in a safe state, i.e. there exists a sequence

{𝑇1, 𝑇2, … , 𝑇𝑛} with 𝑇1 requesting all remaining resources, finishing,

then 𝑇2 requesting all remaining resources, etc..

• Algorithm allows the sum of maximum resource needs of

all current threads to be greater than total resources

4 Jan 2026 SE 317: Operating Systems 32

Banking Example 1

4 Jan 2026 SE 317: Operating Systems 33

Max = 3
Max = 3

Max = 3

Request 3

Give 3

Holding: 3

Request 2

Give 2
Holding: 2

Request 1

Give 1

Holding: 1

Banking Example 2

4 Jan 2026 SE 317: Operating Systems 34

Max = 3
Max = 3

Max = 3

Request 2

Give 2

Holding: 2

Request 2

Give 2
Holding: 2

Request 2

No/Wait

Banker’s Algorithm Example

Banker’s algorithm with dining students

• Safe (won’t cause deadlock) if when you

try to grab chopstick either:

1. Not the last chopstick

2. Is the last chopstick but someone will have

two afterwards

• What if 𝑘-handed students? Don’t allow

if:

– It’s the last one, no one would have 𝑘

– It’s 2nd to last, and no one would have 𝑘 − 1

– It’s 3rd to last, and no one would have 𝑘 − 2

– etc…

4 Jan 2026 SE 317: Operating Systems 35

Im
a
g
e
 S

o
u
rc

e
: h

ttp
://g

m
y
th

o
lo

g
y
.b

lo
g
s
p
o
t.c

o
m

/2
0
0
8
/1

2
/h

u
n
d
re

d
-h

a
n
d

e
d
-o

n
e
s
-h

e
c
a

to
n

c
h

e
ire

s
.h

tm
l

So Far

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation

4 Jan 2026 SE 317: Operating Systems 36

Virtualizing Resources

• Physical Reality: Different Processes/Threads share the

same hardware

– Need to multiplex CPU (Just finished: scheduling)

– Need to multiplex use of Memory (Today)

• Why worry about memory sharing?

– The complete working state of a process and/or kernel is defined

by its data in memory (and registers)

– Consequently, cannot just let different threads of control use the

same memory

• Physics: Two different pieces of data cannot occupy the same

locations in memory

– Probably don’t want different threads to even have access to each

other’s memory (protection)

4 Jan 2026 SE 317: Operating Systems 37

Important Aspects of Memory Multiplexing

Translation
Controlled

Overlap

Protection

4 Jan 2026 SE 317: Operating Systems 38

𝑎 → 𝑏

Process
1

Process
2

Translation: 𝑎 → 𝑏

Ability to translate
accesses from one

address space (virtual)
to a different one

(physical)

When translation
exists, processor uses

virtual addresses,
physical memory uses

physical addresses

Side effects:

• Can be used to avoid
overlap

• Can be used to give
uniform view of memory to
programs

4 Jan 2026 SE 317: Operating Systems 39

Controlled Overlap

• Separate state of threads should not collide in physical

memory.

– Unexpected overlap causes chaos!

• Want to be able to overlap when desired for

communication

– Also debugging…

4 Jan 2026 SE 317: Operating Systems 40

Process
1

Process
2

Protection

• Prevent access to private memory of other processes

• Different pages of memory can be given special behavior

(Read Only, Invisible to user programs, etc).

• Kernel data protected from User programs

• Programs protected from themselves

4 Jan 2026 SE 317: Operating Systems 41

Read

only

So Far

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation

4 Jan 2026 SE 317: Operating Systems 42

Recall: Loading

4 Jan 2026 SE 317: Operating Systems 43

Hardware

Processor
Memory

Storage

(Disk)

Network Displays

Input Devices

Software
ISA

In
s
tru

c
tio

n
s
 +

D
a
ta

Threads

Processes

Address Spaces

Sockets

Files

Windows

OS Hardware Virtualization

OS

Protection

Boundary

Controller

Recall a bit of the old days →

Relocating loaders

4 Jan 2026 SE 317: Operating Systems 44

Multi-step Processing of a Program for Execution

• Preparation of a program

for execution involves

components at:
– Compile time (ex. gcc)

– Link/Load time (UNIX ld does

link)

– Execution time (ex. dynamic

libs)

• Addresses can be bound

to final values anywhere

in this path
– Depends on hardware support

– Also depends on operating

system

4 Jan 2026 SE 317: Operating Systems 45

Multi-step Processing of a Program for Execution

• Dynamic Libraries

– Linking postponed until

execution

– Small piece of code, stub,

used to locate appropriate

memory-resident library

routine

– Stub replaces itself with the

address of the routine, and

executes routine

4 Jan 2026 SE 317: Operating Systems 46

Binding of Instructions and Data to Memory

4 Jan 2026 SE 317: Operating Systems 47

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, loop
 …
checkit: …

Process View of Memory

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical View

of Memory

Assume 4 Byte words
0x300 = 4 x 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

Binding of Instructions and Data to Memory

4 Jan 2026 SE 317: Operating Systems 48

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, loop
 …
checkit: …

Process View of Memory

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical View

of Memory

Physical Memory

0x0000

0x0300 00000020

0x0900 8C2000C0

0C000280

2021FFFF

14200242

0xFFFF

Second copy of the program

4 Jan 2026 SE 317: Operating Systems 49

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, loop
 …
checkit: …

Process View of Memory

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical View

of Memory

Physical Memory

0x0000

0x0900 App X

0xFFFF

What do we do with the addresses? Need translation!

Second copy of the program

4 Jan 2026 SE 317: Operating Systems 50

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, loop
 …
checkit: …

Process View of Memory

0x1300 00000020
 … …
0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
 …
0x1A00

Physical View

of Memory

Physical Memory

0x0000

0x0900 App X

0x1300 00000020

0x1900 8C2004C0

0C000680

2021FFFF

14200642

0xFFFF

• One of many possible translations!

• When does translation take place?

• Compile time, Link/Load time, or Execution time?

So Far

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation

4 Jan 2026 SE 317: Operating Systems 51

General Address translation (Review)

• Address Space: All the addresses and state a process

can touch

– Each process and kernel have different address spaces

• Therefore → Two views of memory:

– View from the CPU (what program sees, virtual memory)

– View from memory (physical memory)

– Translation box (MMU) converts between the two views

• Translation makes it much easier to implement protection

– If Job A cannot even gain access to Job B’s data, no way for A to

adversely affect B

• With translation, every program can be linked/loaded into

the same region of user address space

4 Jan 2026 SE 317: Operating Systems 52

General Address translation (Review)

4 Jan 2026 SE 317: Operating Systems 53

MMU

Virtual

Addresses

Physical

Addresses

Untranslated Read or Write

Simple Example: Base and Bounds (CRAY-1)

• Base + limit for dynamic address translation (runtime)
– Alter address of every load/store by adding “base”

– Error if address > limit

• Gives program illusion it is running alone, with memory

starting at 0

– Program gets continuous region of memory

– Addresses in program do not need relocation when program

placed in different region of DRAM

4 Jan 2026 SE 317: Operating Systems 54

DRAM

<?

+

Base

Limit

CPU

Virtual

Address

Physical

Address

No: Error! B
y
 C

le
m

e
n

s
 P

F
E

IF
F

E
R

 -
 O

w
n
 w

o
rk

,
C

C
 B

Y
 2

.5
,

h
tt

p
s
:/

/c
o
m

m
o
n
s
.w

ik
im

e
d
ia

.o
rg

/w
/i
n

d
e
x
.p

h
p
?
c
u
ri
d

=
1
4
4
1
4

5
3

Issues with Simple B&B Method

4 Jan 2026 SE 317: Operating Systems 55

• Fragmentation problem

– Not every process is the same size

– Over time, memory space becomes

fragmented

• Missing support for sparse address

space

– Would like to have multiple chunks

per program

– Ex: Code, Data, Stack

• Hard to do inter-process sharing

– Want to share code segments

when possible

– Want to share memory between

processes

– Helped by providing multiple

segments per process

Process 6

Process 5

Process 2

OS

Process 6

Process 5

OS

Process 6

Process 5

Process 9

OS

Process 6

Process 9

Process 10

OS

Process 11

More Flexible Segmentation

• Logical View: Multiple

separate segments

– Typical: Code, Data,

Stack

– Others: memory

sharing, etc

• Each segment is given

region of contiguous

memory

– Has a base and limit

– Can reside anywhere

in physical memory

4 Jan 2026 SE 317: Operating Systems 56

Subroutine

Stack

sqrt

Main program

Symbol table

Logical Addresses

More Flexible Segmentation

4 Jan 2026 SE 317: Operating Systems 57

Subroutine

Stack

sqrt

Main program

Symbol table

Logical Addresses

1

2

5

3

4

User view

of memory space

1

2

3

4

5

Physical memory space

80386 Special Registers
Typical Segment Register

Current Priority is RPL of

Code Segment (CS)

4 Jan 2026 SE 317: Operating Systems 58

Intel x86 Special Registers

15 3 2 1 0

Index TI RPL

• RPL: Requestor Privilege

Level

• TI: Table Indicator

• 0 = GDT, 1=LDT

• Index: Index into table

• Protected memory segment

selector

Ex: 4 Segments (16b addresses)

4 Jan 2026 SE 317: Operating Systems 59

Virtual Address Format

Seg Offset

15 14 13 0

Seg ID# Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

0x0000

0x4000

0x8000

0xC000

Virtual Address Space

0x0000

0x4000 Might be shared

0x4800

0x5C00 Space for other apps

0xF000 Shared with other apps

SegID=0

SegID=1

Physical Address Space

Implementation of Multi-Segment Model

4 Jan 2026 SE 317: Operating Systems 60

• Segment map resides in processor

– Segment number mapped into

base/limit pair

– Base added to offset to generate

physical address

– Error check catches offset out of

range

• As many chunks of physical
memory as entries
– Segment addressed by portion of

virtual address

– However, could be included in
instruction instead:

• x86 Example: mov [es:bx],ax.

• What is V/N (valid / not valid)?
– Can mark segments as invalid;

requires check as well

Seg# Offset

Virtual Address

Base0 Limit0 V

Base1 Limit1 V

Base2 Limit2 V

Base3 Limit3 N

Base4 Limit4 N

Base5 Limit5 V

>
Offset

Error!

+
Physical

Address

Check Valid

Error! No

Virtual versus Physical

4 Jan 2026 SE 317: Operating Systems 61

MMU

Virtual addresses

Read from

Virtual address

Translate via

Segment Table

Read from

Physical address

Read from
0x240

In: Segment 0
Base: 0x4000

Read from
0x4240

Physical addresses

Running more programs than fit in memory: Swapping

Q: What if not all processes fit in memory?

A: Swapping: Extreme form of Context Switch

• To make room for next

process, some or all the

previous process is moved to disk

• Greatly increases the cost of

context switching

What else could we do?

• Keep only active portions of a

process in memory

• Need finer granularity control over physical memory

4 Jan 2026 SE 317: Operating Systems 62

Swapping imagined

4 Jan 2026 SE 317: Operating Systems 63

In Memory Segment to load

Free = white blocks

Swapping imagined

4 Jan 2026 SE 317: Operating Systems 64

In Memory

Stored on diskFree = white blocks

Memory Layout for Linux 32-bit

4 Jan 2026 SE 317: Operating Systems 65

Im
a
g
e
 s

o
u
rc

e
:

h
tt

p
:/

/s
ta

ti
c
.d

u
a
rt

e
s
.o

rg
/i
m

g
/b

lo
g
P

o
s
ts

/l
in

u
x
F

le
x
ib

le
A

d
d
re

s
s
S

p
a
c
e
L
a
y
o
u
t.

p
n
g

Problems with Segmentation

Must fit variable-sized
chunks into physical

memory

May move processes
multiple times to fit

everything

Limited options for
swapping to disk

Fragmentation: wasted
space

• External: free gaps between
allocated chunks

• Internal: don’t need all memory
within allocated chunks

4 Jan 2026 SE 317: Operating Systems 66

4 Jan 2026 SE 317: Operating Systems 67

Im
a

g
e

 s
o

u
rc

e
:
X

K
C

D
 (

h
tt

p
s
:/

/w
w

w
.x

k
c
d
.c

o
m

/5
6
2
/)

4 Jan 2026 SE 317: Operating Systems 68

Image source: http://imgur.com/OFEy7

Conclusion

• Starvation and Deadlock

• Address Spaces and Segmentation

– Loading and Translating

– Segments

– Fragmentation

4 Jan 2026 SE 317: Operating Systems 69

	Default Section
	Slide 1: Starvation and Deadlock, Memory and Segments 4 January 2026 Lecture 10
	Slide 2: Concept Review
	Slide 3: Topics for Today
	Slide 4: Today’s concepts

	Starvation and Deadlock
	Slide 5: Starvation vs
	Slide 6
	Slide 7: Graph
	Slide 8: Four requirements for Deadlock
	Slide 9: Occasional Deadlock
	Slide 10: Deadlock Examples
	Slide 11: One Lane Bridge Crossing
	Slide 12: One Lane Bridge Crossing
	Slide 13: Deadlock
	Slide 14: Trains (Wormhole-Routed Network)
	Slide 15: Trains (Wormhole-Routed Network)
	Slide 16: Dining Students Problem
	Slide 17
	Slide 18: Resource-Allocation Graph
	Slide 19: Resource Allocation Graph Examples
	Slide 20: Resource Allocation Graph Examples
	Slide 21: Methods for Handling Deadlock
	Slide 22: Deadlock Detection Algorithm
	Slide 23: Deadlock Detection Algorithm
	Slide 24: What to do when detect deadlock?
	Slide 25: What to do when detect deadlock?
	Slide 26: Techniques for Preventing Deadlock
	Slide 27: Techniques for Preventing Deadlock
	Slide 28: Techniques for Preventing Deadlock
	Slide 29: Trains (Wormhole-Routed Network)
	Slide 30: Dimension Ordering
	Slide 31: Another Idea: Accounting
	Slide 32: Banker’s algorithm (less conservative):
	Slide 33: Banking Example 1
	Slide 34: Banking Example 2
	Slide 35: Banker’s Algorithm Example

	Virtualizing Resources
	Slide 36: So Far
	Slide 37: Virtualizing Resources
	Slide 38: Important Aspects of Memory Multiplexing
	Slide 39: Translation: a. goes to b
	Slide 40: Controlled Overlap
	Slide 41: Protection

	Loading
	Slide 42: So Far
	Slide 43: Recall: Loading
	Slide 44
	Slide 45: Multi-step Processing of a Program for Execution
	Slide 46: Multi-step Processing of a Program for Execution
	Slide 47: Binding of Instructions and Data to Memory
	Slide 48: Binding of Instructions and Data to Memory
	Slide 49: Second copy of the program
	Slide 50: Second copy of the program

	Segments
	Slide 51: So Far
	Slide 52: General Address translation (Review)
	Slide 53: General Address translation (Review)
	Slide 54: Simple Example: Base and Bounds (CRAY-1)
	Slide 55: Issues with Simple B&B Method
	Slide 56: More Flexible Segmentation
	Slide 57: More Flexible Segmentation
	Slide 58: Intel x86 Special Registers
	Slide 59: Ex: 4 Segments (16b addresses)
	Slide 60: Implementation of Multi-Segment Model
	Slide 61: Virtual versus Physical
	Slide 62: Running more programs than fit in memory: Swapping
	Slide 63: Swapping imagined
	Slide 64: Swapping imagined
	Slide 65: Memory Layout for Linux 32-bit
	Slide 66: Problems with Segmentation
	Slide 67
	Slide 68
	Slide 69: Conclusion

