Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

27
{’ A

’)
DTN

n

nnin2N,NoTMN

LN/

Kl
=

Course: Operating Systems - Semester 1 of 5786
Assignment 3

Directions

A. Due Date: 22 December 2025 at 11:55pm
B. Groups of up to two (2) students may submit this assignment.

C. Code for this assignment must be submitted via Github using the private repository opened for you
on GitHub.

D. You must begin from the starter code given in the GitHub template repository for the assignment.

E. Each team member must make at least 1 substantive commit of code to the repository. Write good
commit messages, following the instructions at this tutorial: https://www.theodinproject.com/
lessons/foundations-commit-messages

F. The last commit must include the message “Submitted for grading”

G. The instructions for this assignment include a requirement to commit the code in specific stages. If
you do not follow the commit instructions, there will be a grade penalty. In certain cases, not following
the commit instructions will lead to a 0 grade. For instance, performing only a single commit with
your final solution will lead to a 0 grade.

H. The assignment requires you to build a shell. Ensure that your solution does not print any extraneous
output when stdin is not a terminal. That is, any time a built-in or a process is run with your shell,
only the output of the built-in or process should be printed. do not print anything extra for debugging,

I. There are 100 points total on this assignment.
J. What to turn in via your GitHub repository:
(a) Makefile for the whole project (requirements below)
(b) Completed shell.c (where you're going to do your work)

(c) tokenizer.h and tokenizer.c from the template (they are already in the repository template,
just don’t remove them!)

(d) Any additional files required for compilation.
() README.md file with:

e Names and TZ of the students

e Assignment name (Assignment 3)

e Course name

e Semester (A/B) and Academic Year

e How many hours were spent on the assignment’s execution (break down by the names of the
students submitting)

e Any personal comments or thoughts you want to add

(© Michael J. May Page 1 of Kinneret College on the Sea of Galilee

https://www.theodinproject.com/lessons/foundations-commit-messages
https://www.theodinproject.com/lessons/foundations-commit-messages

General Requirements

1. All of the code below must be written in C and compilable and executable in a standard Linux Mint
or Linux Ubuntu environment.

2. All code must have comments - each function must have an introductory comment detailing its purpose,
input parameters, and return value.

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

Shell]

In this homework, you’re going to build a shell similar to the Bash shell you use on your Mint virtual machine.
The purpose of a shell is to allow users to run and manage programs. The operating system kernel provides
well-documented interfaces for building shells. By building your own shell, you’ll become more familiar with
these interfaces and you’ll probably learn more about other shells as well.

1 Step 1: Makefile

Open a repository for the assignment using the link provided in Moodle. Once your repository is working
you’ll find starter code for your shell. It includes a string tokenizer, which splits a string into words. In order
to run the shell, you should be able to run the following from the command line:

$ make
$./shell

In order to terminate the shell after it starts, either type exit or press CTRL-D.

What to do Write a Makefile for the project which includes the following rules:

e An all rule which compiles the code into an executable called shell. The rule should be the default
rule for the make tool.

e For each *.c file: An intermediate rule to compile it to a *.o file.

e A clean rule that erases all *.o files and the shell executable.

2 Step 2: Add support for cd and pwd

The skeleton code for your shell has a dispatcher for built-in commands. Every shell needs to support a
number of built-in commands, which are functions in the shell itself, not external programs. For example,
the exit command needs to be implemented as a built-in command, because it exits the shell itself. So far,
the only two built-ins supported are 7, which brings up the help menu, and exit, which exits the shell.

Do the following steps:
1. Add a new built-in command pwd that prints the current working directory to standard output.

2. Add a new built-in command cd that takes one argument (a directory path) and changes the current
working directory to that directory.

(a) If the desired directory doesn’t exist, print “No such file or directory” to standard output

3. Next, add support for commands such as “cd .” (stay in the same directory) and “cd ..” (move up
to the parent directory).

4. Next, add support for cd without an argument. When the user enters just “cd” followed by an enter,
change the working directory to the user’s HOME directory (you can get it using the environment
variable HOME).

5. When you’re done, push your code and makefile to the repository. Write the following message in the
commit message: “Add support for cd and pwd”

1This assignment is adapted from HW2 of CS162 at UC Berkeley by Stoica.

(© Michael J. May Page 3 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

2.1 Tests

The following tests will be performed to ensure your code works properly:

pwd

pwd

cd

cd /usr/bin
cd /

cd /tmp

cd .

cd ..

cd tmp

cd ../usr/bin
cd /tmp/temp

The outputs should be as follows:
1. 0: pwd The shell must output the current working directory
1: pwd .. The shell must output the current working directory (e.g., ignore the ..)
cd The shell must move the current working directory to the user’s HOME directory

cd /usr/bin The shell must move the current working directory to /usr/bin

cd /tmp The shell must move the current working directory to /tmp

cd . The shell must leave the current working directory alone

® N e ot wN

2
3
4: c¢d / The shell must move the current working directory to /
5
6
7:

cd .. The shell must move the current working directory to the parent of the current working
directory (if you followed the steps here, it should now be /)

9. 8: cd tmp The shell must move the current working directory to the tmp subdirectory (if you follow
the steps here, it should now be /tmp). If tmp doesn’t exist, output “No such file or directory”

10. 9: cd ../usr/bin The shell must move the current working directory up one level and then down
to the usr/bin subdirectory. If you follow the steps here, it should now be /usr/bin). If there is
no appropriate subdirectory (after moving up one, there is no subdirectory usr with bin as a sub-
subdirectory), output “No such file or directory” and leave the current working directory unchanged.

11. 10: cd /tmp/temp The shell must print “No such file or directory” and leave the current working
directory unchanged.

3 Step 3: Program execution

If you try to type something into your shell that isn’t a built-in command, you’ll get a message that the
shell doesn’t know how to execute programs. Modify it so it can execute programs when they are entered
into the shell. The first word of the command is the name of the program. The rest of the words are the
command-line arguments to the program.

For this step, use the functions defined in tokenizer.c for separating the input text into words. You do not
need to support any parsing features that are not supported by tokenizer.c. Right now, you can assume
that the first word of the command will be the full path to the program. So instead of running wc, you would
have to run /usr/bin/wc. In the next section, you will implement support for simple (non-complete path)
program names like wec. However, you can get some points for the assignment by only supporting full paths.

Once you implement this step, you should be able to execute programs like this:

$./shell
/usr/bin/wc shell.c
77 262 1843 shell.c

(© Michael J. May Page 4 of Kinneret College on the Sea of Galilee

/usr/bin/wc

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

When your shell needs to execute a program, it must fork a child process, which calls one of the exec
functions to run the new program. The parent process must wait until the child process completes and then
continue listening for more commands.

Once you’re done with this step, push your code to the repository. Add a commit message with the following;:
“Add support for basic program execution”

3.1 Tests

The following tests will be performed to ensure your code works properly:

/usr/bin/1ls

/usr/bin/ls -1

/usr/bin/ls shell.c shell.o -1
/usr/bin/touch filel.txt
/usr/local/bin/apt
/usr/bin/nano filel.txt

/usr/bin/firefox

/usr/bin/curl https://mjmay-kinneret.github.io/syllabuses/0S-Fall-5786-Syllabus.pdf --output
syllabus.pdf

/usr/bin/wc

/usr/bin/wc filel.txt file2.txt file3.txt filed.txt file5.txt file6.txt

The output behavior must be as follows:
1. 0: /usr/bin/1ls Print the contents of the current working directory
2. 1: /usr/bin/ls -1 Print the contents of the current working directory with long details

3. 2: /usr/bin/ls shell.c shell.o -1 Print long details about shell.c and shell.o in the current
working directory.

4. 3: /usr/bin/touch filel.txt Must create a file called filel.txt. No output should be shown.
5. 4: /usr/local/bin/apt Print the output from the apt command (about packages and installation)

6. 5: /usr/bin/nano filel.txt Open the nano editor on screen for editing of filel.txt. The shell waits
for the nano editor to close to return to interactivity.

7. 6: /usr/bin/firefox Starts the Firefox browser. The shell waits for the Firefox browser to close to
return to interactivity.

8. 7: /usr/bin/curl https://mjmay-kinneret.github.io/syllabuses/0S-Fall-5786-Syllabus.pdf
—--output syllabus.pdf Uses the curl tool to download the specified document. The content of the
page is stored at syllabus.pde]

9. 8: /usr/bin/wc The wc program is started. Standard input goes to the wc program. When Ctrl4+-D
is entered, wc shows the results of the input. The shell waits for the wc program to close to return to
interactivity.

10. 9: /usr/bin/wc filel.txt file2.txt file3.txt filed.txt fileb5.txt file6.txt The wc pro-
gram is started. It is provided with the files in the list as parameters. When finished, wc outputs it
results to standard output. The shell waits for the wc program to close to return to interactivity.

4 Step 4: Path Resolution

You probably found it a pain to test your shell in the previous part because you had to type the full path
of every program. Luckily, every program (including your shell program) has access to a set of environment

2If your OS doesn’t have curl installed, you can install it using sudo apt install curl.

(© Michael J. May Page 5 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

variables, a hashtable of string keys to string values the operating system maintains. One of these environ-
ment variables is the PATH variable. You can print the PATH variable of your current environment on your
Mint or Ubuntu VM: (use bash for this, not your shell)

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:...

When bash or any other shell executes a program like wc, it looks for a program called wc in each directory
on the PATH environment variable and runs the first one it finds. The directories on the path are separated
with a colon.

Important: If the user writes the name of a program without a complete or relative path (e.g., writing
“$ wc” at the command prompt), look for the program only in the PATH directories. Do not look for it in
the working directory. For instance, if there is a program called “wc” in the working directory and the user
types “$ wc”, run the “wc” that is found on the PATH and not the one in the working directory. As another
example, if there is a program called “foo” in the working directory, the user types “$ foo”, and there is no
program called “foo” found in the PATH directories, do not run the “foo” in the working directoryﬂ

Modify your shell so it uses the PATH variable from the environment to resolve program names. Typing in
the full pathname of the executable should still be supported. Do not use execvp (which does the path
search for you). Use execv instead and implement your own PATH resolution. If you use execvp or do not
do manual path resolution you will not receive points for this section.

Once you’re done, push your code to the repository. Add a commit message with the following: “Add
support for path resolution”

4.1 Tests

The following tests will be performed to ensure your code works properly:

1s

1s -1

ls shell.c shell.o -1

touch file2.txt

apt

nano file2.txt

firefox

curl https://mjmay-kinneret.github.io/syllabuses/0S-Fall-5786-Syllabus.pdf --output

syllabus2.pdf
wc
wc filel.txt file2.txt file3.txt filed.txt fileb5.txt fileb6.txt
shell
./shell
cat shell.c
./cat shell.c

The output behavior must be as follows:
1. 0: 1s Print the contents of the current working directory
2. 1: 1s -1 Print the contents of the current working directory with long details

3. 2: 1s shell.c shell.o -1 Print long details of the shell.c and shell.o files in the current working
directory.

4. 3: touch file2.txt Must create a file called file2.txt. No output should be shown.

ot

4: apt Print the output from the apt command (about packages and installation)

6. 5: mnano file2.txt Open the nano editor on screen for editing of file2.txt. The shell waits for the
nano Editor to close before it returns to interactivity.

3In order to run “foo” in the working directory, the user must either enter the relative path ($./foo) or the complete path
($ /usr/home/mjmay/foo).

(© Michael J. May Page 6 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

7. 6: firefox Starts the Firefox browser. The shell waits for the Firefox browser to close to return to
interactivity.

8. 7: curl https://mjmay-kinneret.github.io/syllabuses/0S-Fall-5786-Syllabus.pdf --output
syllabus2.pdf Uses the curl tool to download the specified webpage. The content of the page is output
to syllabus2.pdf.

9. 8: wc The wc program is started. Standard input goes to the wec program. When Ctrl+D is entered,
wc shows the results of the input. The shell waits for the wc program to close before it returns to
interactivity.

10. 9: wc filel.txt file2.txt file3.txt filed.txt fileb.txt file6.txt The wc program is started.
It is provided with the files in the list as parameters. When finished, wc outputs it results to standard
output. The shell waits for the wc program to close before it returns to interactivity.

11. 10: shell The command should fail since there is no built in command called “shell” in Linux. The
output should include the words “Not found”.

12. 11: ./shell The command should run the shell program in the current working directory. The
parent shell waits for the child shell to close before it returns to interactivity.

13. 12: cat shell.c Print the contents of the file shell.c in the current working directory.

14. 13: ./cat shell.c Run the program “cat” in the current working directory. Provide the parameter
shell.c to it. The shell waits for the local cat program to close before it returns to interactivity.

5 Step 5: Input/Output Redirection

When running programs, it is sometimes useful to provide input from a file or to redirect output to a file. The
syntax [process] > [file] tells your shell to redirect the process’s standard output to a file. Similarly,
the syntax [process] < [file] tells your shell to feed the contents of a file to the process’s standard input.

Modify your shell so it supports redirecting stdin and stdout to files.
e You do not need to support redirection for shell built-in commands.
e You do not need to support stderr redirection or appending to files (e.g. [process] >> [filel).
e You can assume that there will always be spaces around special characters < and >.

Remember that the < [file] or > [file] are not passed as arguments to the program.

Once you’re done, push your code to the repository. Add the following to your commit message: “Add
support for input/output redirection.”

5.1 Tests

The following tests will be performed to ensure your code works properly:

apt > aptOutfile.txt

wc > wcMultipleInFileOutl.txt first-file-to-open.txt second-file-to-open.txt
wc first-file-to-open.txt > wcMultipleInFileOut2.txt second-file-to-open.txt
wc first-file-to-open.txt second-file-to-open.txt > wcMultipleInFileOut3.txt
wc < wc-testing-file.txt > wcInputOutfile.txt

wc > wclInputOutfile.txt < wc-testing-file.txt
echo Hello there > filel.txt

ls -lart > filelist.txt

cat < filelist.txt

cat filel.txt < filelist.txt

The output behavior must be as follows:

1. 0: apt > aptOutfile.txt The output from the apt command is written to the file aptOutfile.txt

(© Michael J. May Page 7 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

2. 1: wc > wcMultipleInFileOutl.txt first-file-to-open.txt second-file-to-open.txt wc is
provided two files as parameters (first-file-to-open.txt and second-file-to-open.txt). The output from
wc is written to weMultipleInFileOutl.txt.

3. 2: wc first-file-to-open.txt > wcMultipleInFileOut2.txt second-file-to-open.txt wc is
provided two files as parameters (first-file-to-open.txt and second-file-to-open.txt). The output from
wc is written to weMultipleInFileOut2.txt.

4. 3: wc first-file-to-open.txt second-file-to-open.txt > wcMultipleInFileOut3.txt wc is
provided two files as parameters (first-file-to-open.txt and second-file-to-open.txt). The output from
wc is written to weMultipleInFileOut3.txt.

5. 4: wc < wc-testing-file.txt > wcInputOutfile.txt wc is provided with wec-testing-file.txt as
input via standard input. The output from wc is written to welnputOutfile.txt.

6. 5: wc > wcInputOutfile.txt < wc-testing-file.txt wc is provided with wc-testing-file.txt as
input via standard input. The output from wc is written to wclnputOutfile.txt.

7. 6: echo Hello there > filel.txt echo program is provided with Hello there as parameters.
Output from echo is written to filel.txt

8. 7: 1s -lart > filelist.txt Is program is provided with -lart as a parameter. Standard output
from ls is written to filel.txt.

9. 8: cat < filelist.txt cat program is provided with the filelist.txt file as input from standard
input. Output is written to standard output (screen).

10. 9: cat filel.txt < filelist.txt cat program is provided with filel.txt as a parameter and stan-
dard input it provided from filelist.txt In practice, cat will use the filel.txt input, ignoring the redirected
standard input.

6 Step 6: Pipes

Sometimes it is useful to provide the output of a program as the input of another program. The syntax
[process A] | [process B]

tells your shell to pipe the output of process A to the input of process B. In other words, the output of
program A becomes the input of program B. (Think redirecting STDOUT from A to go to STDIN from B).

Modify your shell so it supports pipes between programs. Assume there will always be spaces around the
special character |. Outputs may be piped more than once. For example,

[process A] | [process B] | [process C]
can be passed as an argument to the program.

Once you’re done, push your code to the repository. Add the following to your commit message: “Add
support for pipes.”

6.1 Tests

The following tests will be performed to ensure your code works properly:

1s -lart | grep txt
1s -lart | grep txt | wc

echo I like cats | grep cats | wc
cat /etc/passwd | cut --fields=1,2 --delimiter=: | grep x | sha256sum | grep b

The output behavior must be as follows:

(© Michael J. May Page 8 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

1. 0: 1s -lart | grep txt The output from the ls program (standard output) is redirected as input
to grep. grep program is provided also with “txt” as a parameter. The result from grep is output to
the command line. Effective output to screen is the rows from the list of files in the current working
directory with the letters txt in them.

Sample output on my computer:

-rw-rw-r—— 1 mjmay mjmay 16 Nov 10 10:31 filel.txt
-rw-rw-r-— 1 mjmay mjmay 599 Nov 10 10:31 filelist.txt

2. 1: 1s -lart | grep txt | wc The output from the Is program (standard output) is redirected as
input to grep. grep program looks for the letters txt. The result from grep is output to standard input
for we program. The output from wc in output to the command line. Effective output is a single line
with the character, word, and line count from the lines with “txt” in them.

Sample output on my computer:
2 18 113

3. 2: echo I like cats | grep cats | wc echo program is provided with I 1like cats as parame-
ters. The output from echo is redirected to standard input for grep. grep is provided with cats as a
parameter. The output from grep is redirected to standard input for wc program. The output from
wc program is output to the command line. Effective output is a single line with the character, word,
and line count of the original line (it has the word cats in it, so it matches).

Sample output on my computer:
1312

4. 3: cat /etc/passwd | cut --fields=1,2 --delimiter=: | grep x | sha256sum | grep bcat
program is provided with /etc/passwd as a parameter. cat program’s standard output is passed to
cut program’s standard input. cut program is also provided with two parameters (--fields=1,2
--delimiter=:). cut program’s standard output is passed to grep’s standard input. grep’s output is
passed to sha256sum’s standard input. sha256sum’s output is passed to grep’s standard input. grep
program’s output is output to the command line.

Sample output on my computer:

36b06bcc897bc75be9940980c07056414467df63cfdefe683058d13b4d41b0be -

7 Step 7: Signal Handling and Terminal Control

Most shells let you stop or pause processes with special key strokes. These special keystrokes, such as CTRL-
C or CTRL-Z, work by sending signals to the shell’s subprocesses. For example, pressing CTRL-C sends
the SIGINT signal, which usually stops the current program. Pressing CTRL-Z sends the SIGTSTP signal,
which usually sends the current program to the background. If you try these keystrokes in your shell at this
point, the signals are sent directly to the shell process itself. This is not what we want since, for example,
attempting to CTRL-Z a subprocess of your shell will also stop the shell itself. We want to have the signals
affect only the subprocesses the shell creates. Before we explain how you can achieve this effect, let’s discuss
some more operating system concepts.

7.1 Example: Shells in Shells

On your Mint VM, you’ll execute a short series of commands to better understand the correct behavior.
We’ll primarily be making use of two commands, ps and jobs. ps gives you information about all processes
running on the system; jobs gives you a list of jobs the current shell is managing. Enter the following
commands in your terminal, and you should see similar output:

$ ps
PID TTY TIME CMD

(© Michael J. May Page 9 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

20970 ttys002 0:01.30 -bash
$ sh
sh-3.2% ps

PID TTY TIME CMD
20970 ttys002 0:00.63 -bash
22323 ttys004 0:00.01 sh

At this point, we have started a sh shell within our bash shell.

sh-3.28% cat

hello

hello

world

world

7

[1]1+ Stopped (SIGTSTP)
sh-3.2% ps

PID TTY TIME CMD
20970 ttys004 0:00.63
22323 ttys004 0:00.02
22328 ttys004 0:00.01

Notice how sending a CTRL-Z while the cat program was running did not suspend the sh or the bash shells.

sh-3.2% jobs
[1]1+ Stopped (SIGTSTP) cat
sh-3.2% exit

$ ps
PID TTY TIME CMD
20970 ttys004 0:00.65 -bash

Since exit terminates the shell it’s typed into, we terminated the sh program and returned to the bash shell
that started sh. Enter exit again and your terminal will close. Before we explain how you can achieve this
effect, let’s discuss some more operating system concepts.

7.2 Process groups

As mentioned in class, every process has a unique process ID (pid). Every process also has a (possibly non-
unique) process group ID (pgid) which by default is the same as the pgid of its parent process. Processes
can get and set their process group ID with getpgid(), setpgid(), getpgrp(), or setpgrp(). You can see
more about them on the related man pages.

Keep in mind that when your shell starts a new program it might require multiple processes to function
correctly. All of the processes will inherit the same process group ID of the original process. So, it may be
a good idea to put each shell subprocess in its own process group to simplify your bookkeeping. When you
move each subprocess into its own process group, the pgid should be equal to the pid.

7.3 Foreground terminal

Every terminal has an associated foreground process group ID. When you type CTRL-C, your terminal sends
a signal to every process inside the foreground process group. You can change which process group is in the
foreground of a terminal with tcsetpgrp(int fd, pid-t pgrp). The fd should be 0 for standard input.

7.4 Overview of signals

Signals are asynchronous messages that are delivered to processes. They are identified by their signal number,
but also have text names that all start with SIG. Some common ones are:

1. SIGINT - Delivered when you type CTRL-C. By default, this stops the program.

(© Michael J. May Page 10 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

2. SIGQUIT - Delivered when you type CTRL-\. By default, this also stops the program, but programs
treat this signal more seriously than SIGINT. This signal also attempts to produce a core dump of the
program before exiting.

3. SIGKILL - There is no keyboard shortcut for this. This signal stops the program forcibly and cannot
be overridden by the program. (Most other signals can be ignored by the program.)

4. SIGTERM - There is no keyboard shortcut for this either. It behaves the same way as SIGQUIT.

5. SIGTSTP - Delivered when you type CTRL-Z. By default, this pauses the program. In bash, if you
type CTRL-Z, the current program will be paused and bash (which can detect that you paused the
current program) will start accepting more commands.

6. SIGCONT - Delivered when you run £g or fg %NUMBER in bash. This signal resumes a paused program.

7. SIGTTIN - Delivered to a background process that is trying to read input from the keyboard. By
default, this pauses the program, since background processes cannot read input from the keyboard.
When you resume the background process with SIGCONT and put it in the foreground, it can try to
read input from the keyboard again.

8. SIGTTOU - Delivered to a background process that is trying to write output to the terminal console,
but there is another foreground process that is using the terminal. Behaves the same as SIGTTIN by
default.

In your shell, you can use kill -XXX PID, where XXX is the human-friendly suffix of the desired signal, to
send any signal to the process with process id PID. For example, kill -TERM PID sends a SIGTERM to the
process with process id PID.

In C, you can use the sigaction system call to change how signals are handled by the current process. The
shell should basically ignore most of these signals, whereas the shell’s subprocesses should respond with the
default action. For example, the shell should ignore SIGTTOU, but the subprocesses should not.

Beware: forked processes will inherit the signal handlers of the original process.

Reading man 2 sigaction (http://man7.org/linux/man-pages/man2/sigaction.2.html) andman 7 signal
(http://man7.org/linux/man-pages/man7/signal.7.html) will provide more information. Be sure to
check out the SIGDFL and SIG_IGN constants.

Your task is to ensure that each program you start is in its own process group. When you start a process,
its process group should be placed in the foreground. Stopping signals should only affect the foregrounded
program, not the backgrounded shell.

Once you’re done, push your code to the repository. Add the following to your commit message: “Add
support for signals and process groups”

7.5 Tests

The following tests will be performed to ensure your code works properly:

we
hello there
~C

cat
hello world
D

bash
“\

The output behavior must be as follows:

(© Michael J. May Page 11 of Kinneret College on the Sea of Galilee

http://man7.org/linux/man-pages/man2/sigaction.2.html
http://man7.org/linux/man-pages/man7/signal.7.html

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

1. 0: wc
hello there
~C
The CTRL-C signal is sent to wc, causing it to quit. The shell then resumes where it left off.

2.1: cat
hello there
hello world
"D The CTRL-D signal (EOF) is sent to cat. It then completes and the shell resumes where it left off.

3. 2: bash
mjmay@mjmay-virtualbox:~$ wc
“\ (Quit (core dumped)
mjmay@mjmay-virtualbox:~$ exit
3:
The CTRL-\ signal is sent to wc, causing it to quit with a core dump. The internal bash shell then
resumes where it left off. After entering exit, the internal bash shell quits and the shell program
resumes where it left off.

8 Grading Rules and Notes

The assignment will use the autograding features of GitHub, so most points will be assigned on commit.
Some tests (e.g., signals) will be tested manually as well. The assignment points will be divided as follows.

1. Step 1: Makefile: 7 points
(a) Build and all rules. 5 points
(b) Clean rule. 2 points
2. Step 2: cd and pwd: 10 points
a. Proper behavior of pwd: 3 points
b. Proper behavior of cd: 7 points
3. Step 3: Program execution: 17 points
a. Executes commands with complete path provided: 12 points
b. Waits for child process to complete: 5 points
4. Step 4: Path resolution: 15 points
a. Executes commands on the path: 10 points

b. Executes local commands with complete path provided (even though there is path support): 5
points

5. Step 5: Redirect I/0O: 15 points
a. Handles redirected input: 8 points
b. Handles redirected output: 7 points
6. Step 6: Pipes: 16 points
a. Sends output from one process to another. 7 points
b. Supports multiple chaining pipes. 9 points
7. Step 7: Signal Processing: 15 points

a. Intercepts signals to the shell. 8 points

(© Michael J. May Page 12 of Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786, Assignment 3 Due: 22 December 2025 at 11:55pm

b. Transfers signals to the child process group. 7 points

8. GitHub Usage and README.md: 5 points

(© Michael J. May Page 13 of Kinneret College on the Sea of Galilee

	Step 1: Makefile
	Step 2: Add support for cd and pwd
	Tests

	Step 3: Program execution
	Tests

	Step 4: Path Resolution
	Tests

	Step 5: Input/Output Redirection
	Tests

	Step 6: Pipes
	Tests

	Step 7: Signal Handling and Terminal Control
	Example: Shells in Shells
	Process groups
	Foreground terminal
	Overview of signals
	Tests

	Grading Rules and Notes

