Operating Systems Semester 1 of 5786 Assignment 2a: SysCall Exploration

SysCall Exploration

1 Introduction

In this assignment, you will bridge the gap between User Space (where your programs run)
and Kernel Space (where the operating system manages hardware).

High-level programming languages use standard libraries (like standard I/O in C) to perform
tasks such as reading files or printing to the screen. Under the hood, these libraries must
ask the Operating System kernel to perform these privileged actions on their behalf. The
mechanism for this request is called a System Call (syscall).

You will use two powerful tools standard on Linux systems:

e objdump: A tool that displays information about object files (executables). We will
use it to view the assembly code of your program without running it (Static Analysis).

e GDB (GNU Debugger): A tool that allows you to run your program step-by-step,
even one assembly instruction at a time, to watch CPU registers change in real-time
(Dynamic Analysis).

1.1 Prerequisites

This assignment must be done in a Linux environment (standard Ubuntu/Debian VM or
WSL2 is acceptable) with the ‘build-essential” and ‘gdb’ packages installed.

To install prerequisites, run:

$ sudo apt update
$ sudo apt install build-essential gdb manpages-dev

2 The Test Program

We will first write a simple program that makes some system calls. We will use two different
ways to print text to the screen to illustrate different layers of abstraction:

e printf(): A high-level standard C library function that handles formatting and buffer-
ing for you.

e write(): A low-level POSIX function that maps very directly to the kernel’s system
call, doing exactly what you tell it to do with no extra help.

2.1 Write the Code

Create a file named syscalldemo.c with the following content:

I #include <unistd.h>
2 #include <string.h>

(© Michael J. May Page 1 of @ Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786 Assignment 2a: SysCall Exploration

3 #include <stdio.h>

5 int main () {
6 char *msg = "Hello, Kernel!\n";
7 int len = strlen(msg);

9 // Using printf (standard C library, high level)
10 printf ("First via standard library, then print ’%d another way\n", len)

)

12 // Using write() directly to stdout (file descriptor 1)
13 // Arguments: write(fd, buffer, count)
14 ssize_t bytes_written = write(l, msg, len);

16 return O0;

Listing 1: syscalldemo.c

2.2 Compile with Debug Symbols

Next, let’s compile the program using gcc with the -g flag, which tells gee to include debug
symbols. These symbols allow GDB to know which line of C source code corresponds to
which chunk of assembly machine code.

Run the following in your terminal:

$ gcc -g -o syscalldemo syscalldemo.c

Verify it works:

$./syscalldemo

First via standard library, then print 15 another way
Hello, Kernel!

3 Static Analysis with objdump

Before running it, let’s look at the executable file to see how the compiler set up the call to
write().

3.1 Disassembly

Run the following command to disassemble the binary. We’ll pipe it to less so you can
scroll through it.

$ objdump -d -M intel syscalldemo | 1less

(Note: -M intel displays assembly in Intel syntax, which is generally easier to read than
the default ATET syntaz. e.g., mov destination, source)

(© Michael J. May Page 2 of @ Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786 Assignment 2a: SysCall Exploration

3.2 Locate Main (6 points)

In less, type /main and press Enter to search for the main function. You’ll have to look for
the correct spot - the word main appears more than once. Look for something that looks
like this (addresses will vary):

0000000000001149 <main>:
1149: B®
114a: 48 89 e5

1144d: 48 83 ec 10

Scroll down until you see the calls to printf and write. They won’t call the functions
directly; they will likely call a “PLT” (Procedure Linkage Table) entry, looking something
like this:

118e: e8 cd fe ff ff call 1060 <write@plt>

What to do

1. (2 points) Submit a screen shot of the disassembly lines that include the PLT calls.

2. (2 points) What is the exact instruction used to call printf in your specific binary?
What is the hexadecimal address of that instruction?

3. (2 points) What is the exact instruction used to call write in your specific binary?
What is the hexadecimal address of that instruction?

4 Dynamic Analysis with GDB

Now we will watch the system call happen in real-time.

4.1 Loading GDB
Start GDB with your program:

$ gdb -q ./syscalldemo
Reading symbols from ./syscalldemo...

(gdb)

Allow GDB to retrieve sources from online if it asks.

4.2 Setting Initial Breakpoints

We will start by pausing at ‘main’.

(gdb) break main

Breakpoint 1 at 0x1155: file syscalldemo.c, line 6.
(gdb) run

(© Michael J. May Page 3 of @ Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786 Assignment 2a: SysCall Exploration

Starting program: /home/student/syscalldemo

Breakpoint 1, main () at syscalldemo.c:6
6 char *msg = "Hello, Kernel!\n";

The program is now paused at the very beginning of main.

4.3 Peeking inside printf (3 points)

Before we look at the simple ‘write’ syscall, let’s see why we aren’t analyzing ‘printf’. Ad-
vance execution to the ‘printf’ line by typing next (or n):

(gdb) next

7 int len = strlen(msg);

(gdb) next

10 printf ("First via standard library, then print ’%d another way)\
n", len);

Now, let’s step inside ‘printf’ using stepi (or si). You may need to do this several times
to get past the PLT (Procedure Linkage Table) wrapper, just like we will later with ‘write’.

(gdb) si

0x0000555555555050 in printf@plt ()

(gdb) si
(repeat until you see __vfprintf_internal or similar)

(gdb) si

__vfprintf_internal (s=0x7ffff7e045c0 <_I0_2_1_stdout_>, format=0
x555555556018 "First via standard library, then print %d another way\n
", ap=ap@entry=0x7fffffffdda0, mode_flags=mode_flags@entry=0)
at ./stdio-common/vfprintf-internal.c:1522

Now that you are inside the real ‘printf’ function, let’s look at the assembly code for it:

You will see a huge amount of assembly code. ‘printf’ is complex! It handles formatting
(%d, %s), buffering (holding data until it has enough to be efficient), and locking (for mul-
tithreading). Finding the actual syscall instruction in here is difficult.

What to do
1. (3 points) Submit a screen shot of the printf disassembly

Let’s escape from ‘printf” and get back to our simple main function. Use the ‘finish’ command
until we're back in main:

(gdb) finish
Run till exit from #0 O0x00007ffff7dfc104 in __printf (

format=0x555555556018 "First via standard library, then print %d
another way\n") at ./stdio-common/printf.c:28
First via standard library, then print 15 another way

(© Michael J. May Page 4 of @ Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786 Assignment 2a: SysCall Exploration

main () at syscalldemo.c:15

15 ssize_t bytes_written = write(l, msg, len);

We have now returned to ‘main’ and are sitting at the ‘write’ function call.

4.4 Stepping into the write wrapper
We are now at the precipice of the ‘write’ call. Unlike ‘printf’, this is a thin wrapper around
the kernel call. Use si to enter the function.

(gdb) si
0x0000555555555060 in write@plt ()

You are now in the PLT linker stub. Keep typing si and pressing enter. You will eventually
land in the real function:

(gdb) si

write () at ../sysdeps/unix/syscall-template.S:78

4.5 The Syscall Assembly (4 points)

Now that we are inside the real write function in libc, let’s look around.

(gdb) disassemble
Dump of assembler code for function __GI___libc_write:
=> 0x00007ff£f£f7eb8590 <+0>: endbr64
0x00007ffff7eb8594 <+4>: cmpb $0x0 ,0xeeaab (%rip) # 0
x7Tf£f££f7fa7040 <__libc_single_threaded>

0x00007ffff7eb859b <+11>: je 0x7ffff7eb85b0 <__GI___libc_write
+32>

0x00007ffff7eb859d <+13>: mov $0x1 ,%eax

0x00007ffff7eb85a2 <+18>: syscall

What to do

1. (2 points) Submit a screen shot of the complete disassembly of the write function (it
might be called __GI___libc write).

2. (2 points) Compare the ‘disassemble’ output of ‘write’ to the one you saw for ‘printf’.
Approximately how many lines of assembly does the ‘write’ wrapper function have
compared to ‘printf’?

Use si repeatedly until the little arrow => is pointing immediately at the syscall instruction.

4.6 Inspecting Registers before the jump (10 points)
STOP immediately before executing the syscall instruction.

On x86-64 Linux, system calls use specific registers to pass arguments to the kernel:

(© Michael J. May Page 5 of @ Kinneret College on the Sea of Galilee

Operating Systems Semester 1 of 5786 Assignment 2a: SysCall Exploration

e RAX: Holds the System Call Number (tells the kernel which action to take).
e RDI: First argument (Standard Output file descriptor, which is 1).
e RSI: Second argument (Address of our message buffer).
e RDX: Third argument (Length of message, which is 15).
Let’s verify this. Run:

(gdb) info registers rax rdi rsi rdx

What to do
1. (2 points) Submit a screen shot of the output from the ‘info registers’ command.

2. (3 points) What is the value in RAX? Look up a ”Linux x64 syscall table” online (e.g.,
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/). Does
this value correspond to sys_write? Explain.

3. (3 points) Does RDI match the file descriptor we passed to ‘write’ (1)? Explain.
4. (3 points) RDX should be the length of ”Hello, Kernel'\n”. Does it match? Explain.

4.7 Crossing the boundary (2 points)

Now, take the final step. This single instruction causes the CPU to switch to privileged
mode and jump into the kernel.

(gdb) si
Hello, Kernel!

You should see “Hello, Kernel!” appear on your screen. The kernel performed the operation
and returned control to your program.

Check the return value. The kernel returns standard values in RAX.

(gdb) info registers rax

It should show the number of bytes successfully written.

What to do

1. (2 points) Submit a screen shot of the output from the ‘info registers’ command.

4.8 Exiting

You can now type continue to let the program finish, and quit to exit GDB.

(© Michael J. May Page 6 of @ Kinneret College on the Sea of Galilee

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

	Introduction
	Prerequisites

	The Test Program
	Write the Code
	Compile with Debug Symbols

	Static Analysis with objdump
	Disassembly
	Locate Main (6 points)

	Dynamic Analysis with GDB
	Loading GDB
	Setting Initial Breakpoints
	Peeking inside printf (3 points)
	Stepping into the write wrapper
	The Syscall Assembly (4 points)
	Inspecting Registers before the jump (10 points)
	Crossing the boundary (2 points)
	Exiting

