IS8055556: Data and Computer Communications	Recitation 6
Semester 2 5785	6 May 2025
Lecturer: Michael J. May	Tel Hai College

Sliding Window

1 Simple Sliding Window

Draw a timeline diagram for the sliding window algorithm with SWS = RWS = 3 with 8 frames for the following situations. Use a timeout interval of $2 \times RTT$.

- (a) All packets arrive ok.
- (b) Frame 4 is lost.
- (c) Frames 4 and 5 are lost.

To be more concrete, let's choose some numbers for the parameters. Each frame is 1KB, the medium has a 2Mbps bandwidth, and the RTT is 100ms. ACK frames are 100B.

2 Sliding Window with Duplicate ACKs

Modify the time lines from the previous question using the following modification to the sliding window algorithm (a fast retransmit modification):

The receiver sends a duplicate acknowledgement if it does not receive the expected frame. For example, it sends DUPACK[1] when it expects to see FRAME[2] but receives FRAME[3] instead. When the sender receives a DUPACK message, it immediately sends the (assumed) lost message.

Continue with the existing assumption that the receiver sends a cumulative acknowledgment after it receives all the outstanding frames. For example, it sends ACK[4] when it receives the lost frame FRAME[2] after it already received FRAME[3] and FRAME[4]. Use a timeout interval of about 2×RTT.

- (a) Frame 4 is lost, but the sender works with the fast retransmit modification.
- (b) Frames 4 and 5 are lost, but the sender works with the fast retransmit modification.

Let's choose numbers for the parameters. There are 8 frames total. Each frame is 1KB, the medium has a 2Mbps bandwidth, and the RTT is 100ms. ACK frames are 100B.

Does using the fast retransmit modification make a difference?

©Michael J. May