
Emergency Alerts as RSS Feeds

with Interdomain Authorization∗

Filippo Gioachin
University of Illinois

at Urbana-Champaign
gioachin@uiuc.edu

Ravinder Shankesi
University of Illinois

at Urbana-Champaign
rshanke2@uiuc.edu

Michael J. May
University of Pennsylvania
mjmay@seas.upenn.edu

Carl A. Gunter
University of Illinois

at Urbana-Champaign
cs.uiuc.edu/cgunter

Wook Shin
University of Illinois

at Urbana-Champaign
wookshin@uiuc.edu

Abstract

Emergency alert systems typically demand push noti-
fication because of the infrequency of such events and
the urgency of notifying parties about them. How-
ever, push notification systems like email have many
limitations, such as susceptibility to SPAM and se-
curity vulnerabilities. We explore the idea of basing
health alerts on RSS feeds, which are a polling-based
notification system. Since emergency alerts may be
restricted to parties like doctors or health administra-
tors and may be drawn from diverse administrative
domains, RSS for health alerts requires a mechanism
for expressing and enforcing inter-domain access poli-
cies for feeds. In particular, we explore using Shibbo-
leth, a federated identity system developed for use in
universities, and an attribute-based policy language,
to provide secure RSS for emergency alerts. We vali-
date the approach by showing how it can be used to
deliver CDC PHIN health alerts. Our experimental
validation shows that, based on our design, existing
server technologies can obtain acceptable throughput
even with fairly complex and diverse access policies.

∗Appearing in The Second International Conference on In-
ternet Monitoring and Protection (ICIMP). Silicon Valley, CA.
July 2007.

1 Introduction

Web-based news feeds have become a popular way for
people to follow current events. Protocols such as Re-
ally Simple Syndication (RSS) provide an easy way
to subscribe to one or more feeds and receive updates
at suitable intervals. The technique is also effective
for personal news such as blogs, which may interest
a specialized community. On the Internet today, the
majority of such feeds are broadcast to the web gen-
erally. It is challenging to restrict distribution so that
only a limited collection of subscribers can see con-
tent. The problem can be addressed in limited con-
texts: for instance, a provider might allow publishers
to restrict their content to parties who have accounts
with the provider and are listed by the publisher in
an Access Control List (ACL). Such techniques ap-
ply only to the users of a specific provider, and the
management of the ACL itself is not scalable.

One area of interest for news notification is emer-
gency alerts, such as ongoing status in events like
fires, hurricanes, epidemic outbreaks, and so on. Ex-
isting mechanisms can accomplish this well so long as
the news is broadcast to the public. However, when
there are restrictions on the audience, the mecha-
nisms experience all of the limitations of the cur-
rent state-of-the-art for restricted access feeds. One

1



particular challenge is that such notifications, al-
though restricted, also need to reach principals in
a diverse collection of administrative domains, such
as government (at many levels), health care work-
ers and privately-owned first responders (like ambu-
lances and tow trucks). Hence, it is not practical to
base a solution on a fixed provider who enables ACLs.

Our aim in this paper is to propose and analyze a
scalable approach to inter-domain authorization for
news feeds. A scalable approach entails the ability
to handle inter-domain access with non-trivial access
control policies, an ability to interoperate with ex-
isting software components and standards (such as
RSS), and acceptable performance. For example,
for the first requirement, a server might provide two
feeds, one for “classified” data and one for “unclassi-
fied” data and let users subscribe to the former only
if they have the right credential. However, as the
types of access restrictions become more complicated
than this, the number of different feeds for different
access classes proliferates and the approach becomes
unscalable. The second requirement means that there
must be limited or no changes in client and server
software except to the extent that these are reason-
ably accommodated with customization techniques
like Java Script or PHP. For the types of applica-
tions we consider, security is a requirement, and it
will have a price, but one aims to limit this price as
much as possible. Our specific performance target is
to deliver worst-case inter-domain access control with
dynamically-determined policies at about 50% of the
throughput of Secure Socket Layer (SSL) encrypted
feeds with no access control. Caching will eliminate
most of this access control overhead in the average
case.

Our approach is based on a system we call “Shib-
boleth RSS” because it uses existing RSS feeds aug-
mented with access control based on Shibboleth, an
inter-domain system that uses attributes of principals
to determine authorization. Attribute-Based Access
Control (ABAC) is a powerful technique that can
handle complex policies in an elegant way and inte-
grates well with existing data systems. In Shibboleth
RSS, a user approaches the server with a Shibboleth
credential, which provides his attributes, and these
are used to create a customized feed that provides all

items allowed to a user with those attributes. On the
server side, the access control policies are described
using Boolean formulas, one for each item in the RSS
feed.

The main results of the paper are an architec-
ture and implementation for Shibboleth RSS, and a
demonstration of how it can be used to implement
an interesting emergency alert system where flexible
policies can be processed efficiently by the server.
The target application uses formats developed for
Partner Communication and Alerting (PCA) by the
Public Health Information Network (PHIN) initiative
of the US Centers for Disease Control and Prevention
(CDC). In particular, we provide feeds of eXtensible
Markup Language (XML) Common Alerting Proto-
col (CAP) documents where the CAP alerts include
XML access policies in elements reserved for such re-
strictions. Our application provides an editor for cre-
ating alerts in the CAP format. These are kept in
a data structure that is converted dynamically with
Extensible Stylesheet Language family Transforma-
tions (XSLT), based on alert policies and subscriber
attributes. Performance results show that a basic
platform can provide satisfactory throughput using
an implementation based on the PHP hypertext pro-
cessor.

The rest of this paper is organized as follows. Sec-
tion 2 discusses background information. Section 3
presents the architecture of our system. A demon-
stration of the architecture is presented in Section 4.
We present our implementation and explain the ex-
periments that we performed on it in Section 5. Re-
lated work is in Section 6. Section 7 concludes.

2 Background

Our architecture uses a combination of RSS and Shib-
boleth to deliver secured messaging. We validate this
with an application based on the CDC PHIN alert
system. In this section we provide background on
these basic topics.

2



2.1 RSS

The RSS family of standards are a scheme for the
broadcast of web content. At its simplest, an RSS
feed is an XML file that summarizes the contents of
a web site. A feed contains a list of items which have
a title, a short summary, a web link, and a back link
to the feed provider. RSS readers download feeds
from particular sites automatically and display them
to users. The addition of creation and expiration
times (time to live) to feeds allows readers to ensure
that they are always displaying the freshest version
of a feed. Feeds can be combined and redistributed
using RSS aggregators to create summaries of many
different web sites.

RSS has been most popularly applied to news sites
and blogs, but its strengths would apply equally to
the broadcast of any rapidly evolving, article-based
content which may be appended or edited. It allows
content creators to create automated summaries of
their work which save readers the time of going to
a site and looking around to see what is new. As
a notification engine, RSS is a polling-based rather
than a push-based technology like email.

With the rapid deployment of RSS in browsers,
email clients, and stand-alone readers, questions
about the security and privacy implications of us-
ing it have arisen [27]. From the user side there have
not been many security advances perhaps since there
have been no documented cases of malware, viruses,
or spam being propagated via RSS to date. From the
content creator side there are technologies to apply
password protection to feeds as well as schemes to
combine various authentication and encryption tech-
nologies to provide end-to-end privacy. As the tech-
nologies mature and gain more widespread adoption
in enterprises, security considerations will move to
the foreground.

2.2 Shibboleth

Shibboleth [19] is an inter-domain attribute-based
authentication system based on Security Assertion
Markup Language (SAML) 1.1 [21]. It enables web-
based single sign-on between different entities in a
federation of organizations that share a trust rela-

Figure 1: Shibboleth High-Level Overview

tionship. In Shibboleth this trust is achieved by the
sharing of public-key certificates. Shibboleth allows
both authentication and attribute-exchange between
two parties in a federation. Users can thereby access
resources of multiple parties within a federation with-
out having to maintain an account with each one of
them.

Figure 1 gives a high-level overview of the enti-
ties in Shibboleth architecture and the steps followed
when a user tries to access a resource. The Ser-
vice Provider (SP) provides an access controlled re-
source to the users within a federation. The Identity
Provider (IdP) vouches for the identity of users and
typically maintains user attribute information. De-
pending on its configuration, the SP can allow access
to resources based on user identity or attributes.

Here is a simplified user-interaction scenario as per
the figure. A new client visiting a protected web-page
at the SP’s website (Req) is redirected to visit his IdP
(Redir, Fwd) using HTTP redirection. The client au-
thenticates himself with the IdP (Auth). After the
IdP verifies the client, it sets an authenticated cookie
(Cookie) that vouches for the user. The cookie may
optionally contain relevant user attributes that the
SP is allowed to view. The IdP redirects the user
back to his original web-page (Access). The SP veri-
fies that the cookie is authenticated (since it has the
IdP’s certificate) and allows the access to the web-
page based on the user’s identity or attributes.

3



2.3 PHIN

The CDC is developing standards to enhance the
preparedness of health providers and public health
officials across the U.S. The Health Alert Network
(HAN) [8], begun in 1998, was funded by CDC to
provide a high speed, secure Internet channel for
health officials and providers across the various states
to communicate and receive health alerts. HAN
was later folded into the alerting functional area of
PHIN (www.cdc.gov/phin), a larger initiative begun
in 2002, which includes four other functional areas
for preparedness.

As part of HAN, each state developed its own
secured web portal for communication with health
care providers and officials. Participating organi-
zations developed, purchased, or received from the
CDC client software to enable users to read and send
messages. Users send messages to each other and
across portals using the Electronic Business using eX-
tensible Markup Language (ebXML) [32]. The PHIN
requirements for performance [11], message formats
(PCA) [12], and cross-functional components [10]
impose procedural, architectural, and security re-
quirements on the member portals and communi-
cation systems. Requirements include message en-
cryption, digital signatures, unique message identi-
fication, message expiration, and access control re-
striction. Alerts are normally sent electronically, but
for emergency situations other communication paths
(such as telephone, fax, pager, etc.) are required as
well. Due to the sensitive nature of health alerts,
access may be restricted by communicating parties.

CDC recommends using the CAP [4] formats for
sending health alerts [12]. CAP is an open XML stan-
dard format for alerts and notifications. A CAP alert
message contains start time, expiration time, tar-
geted geographical area, and other relevant fields. As
a standardized alert format used by various U.S. gov-
ernment departments, CAP enables applications to
receive alerts from different sources and process them
uniformly.

Figure 2: High-Level Architecture overview of the
Shibboleth RSS system.

3 Architecture

Our secure notification architecture enables sub-
scribers to securely send messages to and retrieve
RSS notification summaries from local HANs. Fig-
ure 2 shows its main components. Each client is as-
sociated with one or more IdPs (to the left), which
maintain public health directories of users and their
attributes. Local HANs (to the right) trust certain
IdPs to provide user credentials and attributes. A
HAN maintains a database of CAP notifications that
it publishes as well as their associated message-level
access policies. The CAP filter restricts subscriber
access to notifications based on policies and provided
attributes. A CAP to RSS converter translates noti-
fications into a format suitable for RSS readers.

4



The arrows in the figure represent the typical exe-
cution path for a subscriber request. The client be-
gins by sending a request (P1) to a HAN publisher
to view new notifications. Since the client is not
yet authenticated, the HAN server sends a redirec-
tion to the client’s IdP. The client sends authenti-
cation tokens to the IdP (P2), which verifies them
and retrieves the client’s attributes from its public
health directory database (P3, P4). The IdP cre-
ates a signed cookie with the client’s name and at-
tributes, and sends it to the client (P5) which then
forwards it (P5) to the HAN server. After authen-
ticating the cookie, the HAN server creates an RSS
feed for the stored alerts based on the user’s signed
attributes (P6). Finally, the server returns the feed to
the client (P7). Details about the processing within
the HAN are given below in 3.3.

The HAN service provider authenticates the user’s
cookie at the first request. It then stores the user’s
attribute information into a PHP session and stores
the session ID as a cookie with the client. This allows
the client to retrieve his feed multiple times, without
requiring any further re-authentication during that
session.

3.1 Design Considerations

The design of our secure RSS notification system was
driven by the following considerations.

First, we needed to allow inter-domain authentica-
tion so that health alerts from different states could
be viewed by appropriate users. We sought to achieve
this without changing the existing framework where
users typically only maintain an account with their
state health system. To achieve this we used the
inter-domain authentication tool Shibboleth.

Second, we needed to allow fine grained access con-
trol filtering to the alerts so users only see alerts they
are authorized to see. To perform this efficiently, we
used a flexible attribute-based policy language, de-
scribed later in 3.3. The name of the policy is at-
tached to the alert in the specific CAP-defined field.

Third, for practical reasons, the system should be
built on top of existing software and provide accept-
able request throughput. Requiring users to install
new software would severely limit the architecture’s

usefulness, so we designed a web browser and RSS-
based user interface. In particular, this entails plac-
ing the policy and filtering logic on the servers.

3.2 Identity Providers and HAN Pub-
lishers

For the IdP’s public health directory, we maintain the
records of users’ roles (e.g. Doctor, Nurse), organi-
zational level (e.g. city, regional, national) as well as
twenty-three other attributes. For large scale imple-
mentations, the CDC recommends a Public-Health
Directory Schema (PHINDir) [9] that organizations
may standardize upon, but for our work we only im-
plemented a subset of them. Since policies depend on
attributes, it is essential that all IdPs offer a certain
minimal set of common attributes. We implemented
the IdP’s public health directory using the Fedora
directory server.

The HAN publisher maintains a database of CAP
alerts. Since they are in a standard format, it is easy
to add other CAP alerts from different sources. We
introduced a web based GUI management interface
to allow administrators to add new alerts. The pub-
lisher server interfaces with users via a set of PHP
scripts.

3.3 Policies

Access control policies make decisions based on user
attributes. For instance, doctors may be allowed to
see a preliminary public health alert before it is con-
firmed and the general public is informed. To enforce
this, a naive approach would be to annotate each
message with its own policy, but such an approach
would quickly become unreasonably and unnecessar-
ily complex. Instead, we use a two-stage scheme for
evaluating policies, as shown in Figure 3. First, the
site administrator writes a set of default policies that
the publisher can enforce. Those policies are stored
in a Policy Rule Database. Then, message writers
can associate their messages with any of the stored
policies. There are two performance benefits to using
this approach. First, we only need to evaluate each
policy at most once per request. Second, we can store
the list of policies that the user satisfies in the user’s

5



Figure 3: Filtering of alerts based on user attributes.

session information. This means that we only need to
evaluate the user’s policies at most once per session.
This significantly improves performance by allowing
users to refresh their feeds without re-evaluating all
the policies.

Policies are stored in an XML file which allows
for arbitrary boolean logic expressions on attributes.
Available combinators include equality (=, 6=) and
value comparisons (<,>,≥,≤). The example below
gives a sample policy snippet which allows access only
if the user is a federal or local public health official.

<restriction>
<name>Agent</name>
<description>Agent descr.</description>
<function>
<and>
<eq value="PUBLIC_HEALTH">Role</eq>
<or>
<eq value="STATE">Organization</eq>
<eq value="FEDERAL">Organization</eq>
</or>
</and>

</function>
</restriction>

The restriction tag begins the policy snippet. Ele-
ment name is the unique identifier of the policy, as
is used in the CAP restrictions field. Function is
the boolean expression evaluated with the user’s at-

tributes. In this example, Role and Organization are
the attributes of the user, and PUBLIC HEALTH,
STATE and FEDERAL are some of the possible val-
ues of these attributes.

Returning to Figure 2, when the HAN server re-
ceives a request accompanied by a signed attributes
cookie, it loads the alerts from the CAP database
and parses them into an XML tree (S1). It then ei-
ther loads and evaluates the policies for the request-
ing user (S2) or retrieves them from the user’s stored
session state. If the user does not provide an authen-
ticated attribute cookie, the filter created only allows
nil policies (i.e. public notifications). The resulting
filter is applied to the alerts to generate the set visible
to the user (S3). Finally, the CAP structure is trans-
formed to RSS (S4). The translation is performed
using an XSL [2] transformation (XSLT) [5], invoked
directly from the PHP script.

The final RSS output is bound to another XSL file
to provide an HTML-compliant format that is dis-
playable by browsers. The HTML format includes
an additional, optional set of Javascript scripts to
provide searching and other capabilities. There is
room for additional optimizations as well, such as
caching the RSS feeds for common policies. This will
greatly improve efficiency if the CAP database does
not change frequently. We consider other optimiza-
tions in Section 5.

4 Demonstration

We developed a pair of scenarios to demonstrate
how our Shibboleth RSS system can be used for
communication between individuals who are in dif-
ferent health care domains. We have recorded a
movie demonstrating the two scenarios using our
current implementation. The movie is available at
seclab.uiuc.edu/securerss.

1. Restricted Report Scenario: A local health
officer reports a suspected bird flu case to the
Shibboleth RSS system and asks other health
officers to watch for similar cases. The report
needs to be restricted to authorized officers since
the reported case has not been confirmed. The

6



Figure 4: Demo Scenarios: (a) a report message that
is only available to health officers and (b) a notifica-
tion message that is available to public.

local officer describes the designated readers us-
ing an access control policy as described in 3.3,
so unauthenticated users cannot read the report
unless they have authenticated to and received
signed attributes from a trusted IdP. Figure 4(a)
illustrates this scenario. The demonstration of
the scenario is performed in the following steps:

(a) First, a local health officer starts his web
browser and points it to the Shibboleth RSS
page.

(b) When the officer presses the login button,
an authentication window pops up. The
authentication window was provided by the
officer’s IdP server.

(c) The officer enters his ID and password, logs
in the system, and sees new menus that are
only available to authenticated persons.

(d) He reports a case of suspected bird flu and
picks an access policy from a list of previ-
ously defined policies.

(e) In the second part of this scenario, a federal
health officer starts a browser and points it
to the Shibboleth RSS page.

(f) Before she logs in, she cannot see the sus-
pected bird flu case.

(g) Once she logs in using her IdP, she is able
to read the sensitive alert.

2. Public Report Scenario: A CDC officer con-
firms that the suspected bird flu case is real, so a

public outbreak notice is made available. Users
can read the public notification without authen-
ticating to the system. This is illustrated in Fig-
ure 4(b). The demonstration of the scenario is
performed in the following steps:

(a) First, a federal health officer logs into the
Shibboleth RSS system using attributes
which are passed from her IdP.

(b) She has found that a suspected bird flu case
was real, so she writes a notification to give
a public alarm.

(c) After writing the notification, she selects a
policy which allows anyone to access it.

(d) Next, a user accesses the CDC health alert
system without logging in and updates his
RSS feeds.

(e) The user can then see several public notifi-
cations including the bird flu warning.

These scenarios do not represent at all the potential
complexity of the policies that may be used in the
RSS feed. However, they do illustrate the basic idea
that the feeds are customized to user attributes based
on Shibboleth credentials. We explore the issues with
complex policies in the next section with respect to
their impact on performance.

5 Experimental Validation

For the validation of our system, we considered only
the components related to the generation and re-
trieval of the RSS feed. For this, we focused on the
server throughput. We did not consider the cost as-
sociated with the user’s login since it is an operation
performed sporadically. In this section we analyze the
performance of the various operations performed by
the server, followed by the throughput obtained with
a few optimizations. All of the tests were performed
with SSL encryption enabled since it is a fundamental
component for the point-to-point security. We con-
clude the section with considerations of the effects of
the SSL encryption on the system.

In order to test our implementation, we set up
an Apache web server running on a Linux SuSE

7



10.1 machine with all the packages for PHP, and
its data structures manipulation software associated
with XML and XSLT. The server machine has a 3
GHz Pentium-4 single core processor, 1 GB of RAM,
and a 100-BaseT ethernet interconnect. While other
server class machines are typically more powerful, our
test server has a reasonable ratio between bandwidth
capacity and processor power. Our architecture can
support any numbers of IdPs, but for our tests we
deployed only one since it does not represent a per-
formance bottleneck. We implemented and deployed
the IdP on a Linux machine running Fedora Core 5
with Shibboleth’s open-source IdP version 1.3c. We
used Apache http daemon with Apache Tomcat as
the Java servlet container for running the IdP.

We constructed two databases for storing the CAP
information, one of size 128 kB and the other of size
512 kB. The smaller one contains 54 infos clustered
into 15 alerts while the big one has four times as
many. Similarly, we built two policy files, one with
ten rules and the other with fifty rules. From these
we created four possible scenarios by combining them
depending on whether there are small or large num-
ber of CAPs and few or many policies. Each CAP
database uses a random set of rules from the set
available for the given scenario. We consider the
small database and policy file a more realistic sce-
nario in real applications than the others. We pro-
pose the others as a comparison with extreme sit-
uations. In particular, we presume data from the
databases would be moved periodically to permanent
storage and the database would contain only the most
recent alerts. As for the policies, since the user post-
ing alerts will have to search through the available
policies to find the most suitable one, a larger num-
ber of policies will make it harder for the poster to
select the proper one.

For each test, we used ten machines acting as
clients. Each machine was set up to issue 21 down-
loads at a time (one for each of the 20 authenticated
users and one for a single non-authenticated user)
and repeat this operation after all 21 downloads fin-
ished. We found that using this many clients pushed
the server to its limit of bandwidth or, almost always,
processor usage. Each test was run for a total time
of one and three minutes, and the effective proces-

sor/bandwidth usage was monitored throughout the
execution.

For each scenario, we divided the work performed
by the server in its various tasks and took a per-
formance measurement for each incrementally. The
results are shown in Figure 5. The first bar repre-

Figure 5: Throughput of the server in pages served
per minute split according into tasks.

sents a download of a file of the same size of the
CAP input without processing by our script. The
remaining bars represent the rate at which further
steps could be accomplished. For example, the sec-
ond (purple) bar represents average throughput doing
only the SSL and PHP operations, whereas the third
represents average throughput doing the SSL, PHP,
and policy steps, and so on. The final (green) bar
represents throughput of our server when it performs
all steps (SSL, S1-4, and HTML formatting). Since
the measurements are averages, they do not strictly
decrease in all cases. Overall the measurements in
Figure 5 represent a worst-case scenario where there
are no optimizations at all.

Using these figures we identified bottlenecks of the
system and developed a few optimizations:

• We stored to the file system a version of the un-
filtered database after being transformed to an
RSS feed and used it to perform the filtering,
thereby avoiding the conversion stage for each re-
quest. (The original CAP database is still main-
tained for other uses.)

8



• We evaluated the policies for a user once at login
and stored them in the session allocated to the
user. Since the user is given a cookie with a
reference number to this session ID, this is secure
as long as the session data is stored on the server.

• We combined the filtering into a single opera-
tion, by searching all the policies not satisfied at
the same time. This contrasts with the previous
version which independently deleted each policy
that was not satisfied.

We did not add the most effective optimization,
caching the results of policy processing, because we
wanted to stress the system in a worst case filtering
scenario where virtually every request requires com-
plete processing.

After these modifications, we re-ran our tests and
obtained the results plotted in Figure 6. As explained

Figure 6: Throughput of our RSS feed, with different
optimizations, compared to a simple download of a
file encrypted with SSL.

in section 3.3, the XSL transformation is performed
in two stages. However, the natural output for the
system is an RSS feed and the client is responsible to
prepare it for visualization in the most appropriate
way. In the optimized version we therefore leave the
final conversion to the client and consider the RSS
feed as the final output.

In Figure 6, there are the two curves from Figure 5
(“Basic” and “RSS (S4)”) plotted against two more
for the optimized versions. These two optimized ver-

sions differ in the implementation of the first opti-
mization described above, namely the storing of the
unfiltered database after conversion to RSS. In par-
ticular, the line “Optimized from RSS” implements
includes this optimization and the other does not.
We reported both of these since neither completely
outperforms the other and the outcome depends on
the scenario. The reason for this can be seen consid-
ering that while the “RSS” optimization avoids the
final conversion, it presents a more complex struc-
ture to the alert filter, which consumes more time for
filtering.

From the graph, we can see a throughput of our
implementation varies from 45% of the unfiltered
throughput in the worst case, to more than 60% for
smaller files. Moreover, we can see that while there is
an impact on performance from the size of the input,
as expected, there is no impact from the number of
policies available to the user.

Finally, we evaluated the impact of SSL encryp-
tion in comparison with the impact of our filtering
scheme. The results are shown in Figure 7. The

Figure 7: Performance impact of SSL encryption vs.
our multistep RSS feed creation.

“Basic plain” curve is limited by the bandwidth of
the system, while the others are mostly limited by
the CPU processing power. Our scheme is the only
source of bottleneck when the CAP database is large,
but for smaller inputs SSL negotiation and encryp-
tion is the predominant cost. We do not represent it

9



in the graph, but we found that for files even smaller
in size, the SSL overhead limits the throughput to
less than 2,500 downloads per second.

We can conclude that any online system that needs
to be secured through SSL encryption (such as web
email) will have a limited number of connections al-
lowed per second, even though each file downloaded
is very small. This does not provide a comprehensive
comparison with all the other existing HAN imple-
mentations, but it does provide insight on the limita-
tions that systems that require strong security face.

In addition to the experiments on the machine
mentioned above, we also ran them on a server set up
as SuSE 10.2 virtual machine running under VMware
with two processors. The results are not reported
here because they are similar to those presented
above with the exception of a scaling factor due to
the different processing power. This suggests that our
conclusions are robust with respect to a meaningful
range of server capabilities.

6 Related Work

Even though RSS was designed for the syndication
and broadcast of content, as noted in the back-
ground section, recent applications have brought up
the need for feeds to have security and privacy pro-
tections [25][27][29]. At a simple level, some blog
sites such as Google’s Blogger allow content creators
to password their pages and RSS summaries, but
since standard http authentication [7][13] does not
encrypt the password in transmission, it suffers from
security weaknesses. Stronger protection schemes
have been implemented using http authorization over
SSL [28][15] and feed encryption [17] using Blow-
fish [30].

The notion of applying access policies to feeds
merges existing work on inter-domain authentication
and authorization enforcement with new distribution
technology. Enterprise software for protecting feeds
is available (e.g. Newsgator [23]) for distribution of
feeds on intranets. Web based document storage and
retrieval systems with federated authentication have
been introduced as well (e.g. WSEmail [20]). Our
introduction of inter-domain attribute-based authen-

tication using Shibboleth [19] is an extension of pre-
vious work to adapt to public health alerts, a applica-
tion domain which already relies on a state-by-state
distributed authentication and authorization frame-
work.

Attribute based encryption [26], access con-
trol [16][33], and messaging [3] have been explored
in recent work. Attribute-based systems have an ad-
vantage over access control list and role based sys-
tems in that they enable permissions to be granted
based on properties of the requestor, removing the
need to manage and update lists of access rights and
roles. We use attribute based policies akin to those
of Goyal, et al. [16] to compose generic policies that
can base decisions on distributed attribute servers.

Our work to streamline public health communica-
tions using RSS feeds builds on the recent develop-
ments in electronic public health infrastructure. The
infrastructure has been built piecemeal across dif-
ferent countries with different systems for cities, re-
gions, and states [1]. One vein of work to improve
the infrastructure has been to analyze the imple-
mentation requirements for networks of different sizes
and purposes [24][18][14][6][22], however, as we have
noted, the fragility and problems that come from
non-uniform systems argue strongly for unified so-
lutions [31]. In that direction, there has been work
in the creation of specialized information and alert
portals, for example Zeng, et al.’s West Nile Virus
and Botulism portal [34]. While disease information
portals can help with the correlation of data from
disparate sources, they are not as well suited for the
active messaging and security that the PHIN PCA ar-
chitecture has sought to solve though its messaging
standards. Our standards-based messaging solution
with its strong security properties and proven per-
formance and scalability offers a superior solution to
unifying health alerts and communications.

7 Conclusion

Our architecture for secure RSS based emergency
notifications shows the flexibility and utility of
attribute-based inter-domain authorization systems.
Our Shibboleth-based approach relies on authen-

10



ticated cookies and federated identity and service
providers to allow the creation and enforcement of
message level policy restrictions. We use RSS to sum-
marize the contents of rapidly changing notification
databases and distribute personalized summaries to
requestors. Our application of SSL and Shibboleth
is a novel approach to satisfy the PHIN PCA secu-
rity requirements that enables the easy composition
of message policies and removes cooperation barriers
between disparate local identity providers.

In terms of performance, even though RSS is a
polling based update mechanism which would seem
to be performance challenged, with off-the-shelf tools
and some simple optimizations we can achieve reason-
able server throughput. Importantly, we show that
our biggest performance penalty comes from using
SSL tunnels, not the evaluation of policies. Since the
notifications server is required by law to encrypt its
messages, this means that the application of policies
can be done at reasonable cost relative to the (re-
quired) cost of encryption.

As part of future work, we will consider user inter-
face issues such as optimizations for assigning types
and policies to messages. Our web interface can be
extended with Shibboleth authenticated web services
to allow for rich client interactions in creating mes-
sages. Browser and RSS reader Shibboleth and SSL
extensions will enable more automated feed reading
as well.

Acknowledgements

We appreciated the contributions of Vijay Nori on
client software in the early steps in this project. We
also appreciated help from Rakesh Bobba and Hi-
manshu Khurana. This work was partially supported
by: NSF CNS05-5170 CNS05-09268 CNS05-24695,
ONR N00014-04-1-0562 N00014-02-1-0715, and a
grant from the MacArthur Foundation.

References

[1] Carla AbouZahr and Ties Boerma. Health informa-
tion systems: the foundations of public health. Bul-

letin of the World Health Organization, 83(8):578–
583, August 2005. Ref. No 04-014951.

[2] Anders Berglund. Extensible stylesheet language
(XSL). W3c recommendation, 5 Dec 2006. www.

w3.org/TR/xsl11.

[3] Rakesh Bobba, Omid Fatemieh, Fariba Khan,
Carl A. Gunter, and Himanshu Khurana. Using
attribute-based access control to enable attribute-
based messaging. In Annual Computer Security Ap-
plications Conference (ACSAC ’06), Miami Beach,
FL, Dec 2006. Applied Computer Security Associates
(ACSA).

[4] Art Botterell. Common alerting protocol, v. 1.0. OA-
SIS standard, OASIS, 2004.

[5] James Clark. XSL transformations (XSLT). W3c
recommendation, 16 Nov 1999. www.w3.org/TR/

xslt.

[6] Andrew S. Doniger, Daniel Labowitz, Stephen Mer-
shon, and Ivan J. Gotham. Design and implemen-
tation of a local health alert network. Journal of
Public Health Management and Practice, 7(5):64–75,
Sep 2001.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. RFC 2068: Hypertext Transfer Pro-
tocol – HTTP/1.1. Internet Society, Jan 1997.

[8] Centers for Disease Control and Prevention. Health
alert network. www2.cdc.gov/han, 18 Jan 2002.

[9] Centers for Disease Control and Prevention. Public
Health Directory Schema, 1.1 edition, 23 Jun 2003.

[10] Centers for Disease Control and Prevention. PHIN
Preparedness: Cross Functional Components, 1.0
edition, 26 April 2005.

[11] Centers for Disease Control and Prevention. PHIN
Preparedness: Key Performance Measures, 1.0 edi-
tion, 26 April 2005.

[12] Centers for Disease Control and Prevention. PHIN
Preparedness: Partner Communications And Alert-
ing Functional Requirements, 1.0 edition, 26 April
2005.

[13] J. Franks, P. Hallam-Baker, J. Hostetler,
S. Lawrence, P. Leach, A. Luotonen, and L. Stewart.
RFC 2617: HTTP Authentication: Basic and Digest
Access Authentication. Internet Society, June 1999.

[14] Ann Fruhling, Anthony Sambol, Steven Hinrichs,
and Gert-Jan deVreede. Designing an emergency re-
sponse system for electronic laboratory diagnostics

11



consultation. In Proceedings of the 39th Hawaii In-
ternational Conference on System Sciences. IEEE,
IEEE Press, 2006.

[15] Steven Garrity. Private RSS feeds: Support for
security in aggregators. labs.silverorange.com/

archives/2003/july/privaterss, 9 July 2003.

[16] Vipul Goyal, Omkant Pandey, Amit Sahai, and
Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In CCS
’06: Proceedings of the 13th ACM conference on
Computer and communications security, pages 89–
98, New York, NY, USA, 2006. ACM Press.

[17] Joe Gregorio. Secure RSS syndication. XML.com –
XML From the Inside Out, 13 July 2005. www.xml.

com/pub/a/2005/07/13/secure-rss.html.

[18] Lawrence P. Hanrahan, Henry A. Anderson, Brian
Busby, Marni Bekkedal, Thomas Sieger, Laura
Stephenson, Lynda Knobeloch, Mark Werner,
Pamela Imm, and Joseph Olson. Wisconsin’s en-
vironmental public health tracking network: in-
formation systems design for childhood cancer
surveillance. Environmental Health Perspectives,
112(14):1434–9, Oct 2004.

[19] Internet2. Shibboleth project – internet2 middle-
ware. shibboleth.internet2.edu/, 2007.

[20] Kevin D. Lux, Michael J. May, Nayan L. Bhattad,
and Carl A. Gunter. WSEmail: Secure internet
messaging based on web services. In IEEE Inter-
national Conference on Web Services, Orlando, FL,
2005. IEEE.

[21] Eve Maler, Prateek Mishra, and Rob Philpott. As-
sertions and protocol for the OASIS security asser-
tion markup language (saml) v1.1. OASIS standard,
OASIS, 2003. oasis-sstc-saml-core-1.1.

[22] Clement J. McDonald, J. Marc Overhage, Michael
Barnes, Gunther Schadow, Lonnie Blevins, Paul R.
Dexter, Burke Mamlin, and INPC Management
Committee. The indiana network for patient
care: A working local health information infrastruc-
ture. Health Affairs, 24(5):1214–1220, Sep/Oct 2005.
Project HOPE-The People-to-People Health Foun-
dation, Inc.

[23] Newsgator. Newsgator enterprise server. www.

newsgator.com/enterprise.aspx, Accessed Feb
2007.

[24] Fay Cobb Payton and Patricia Flatley Brennan. How
a community health information network is really
used. Commun. ACM, 42(12):85–89, 1999.

[25] Mark Pilgrim. How to consume rss safely.
diveintomark.org/archives/2003/06/12/how_

to_consume_rss_safely, 12 June 2003.

[26] Matthew Pirretti, Patrick Traynor, Patrick Mc-
Daniel, and Brent Waters. Secure attribute-based
systems. In CCS ’06: Proceedings of the 13th ACM
conference on Computer and communications secu-
rity, pages 99–112, New York, NY, USA, 2006. ACM
Press.

[27] Jim Rapoza. RSS’ security deadline. EWeek, 15 Sep
2006. www.eweek.com/article2/0,1759,2016515,

00.asp.

[28] Greg Reinacker. RSS “security”. www.rassoc.com/

gregr/weblog/archive.aspx?post=775, 8 Sep 2005.

[29] Paul F. Roberts. Secure RSS courts enterprise adop-
tion. EWeek, 2 Sep 2005. www.eweek.com/article2/
0,1895,1855477,00.asp.

[30] Bruce Schneier. The Blowfish encryption algo-
rithm. www.schneier.com/blowfish.html, Accessed
Feb 2007.

[31] Nancy L. Snee and Kathleen A. McCormick. The
case for integrating public health informatics net-
works: An overview of the elements required for
an integrated enterprise information infrastructure
for protecting public health. IEEE Engineering In
Medicine And Biology Magazine, 23(1):81–88, Jan-
uary/February 2004.

[32] ebXML Technical Architecture Project Team.
ebXML Technical Architecture Specification v.1.0.4.
OASIS, 16 Feb 2001. ebxml.org.

[33] Lingyu Wang, Duminda Wijesekera, and Sushil Ja-
jodia. A logic-based framework for attribute based
access control. In FMSE ’04: Proceedings of the 2004
ACM workshop on Formal methods in security engi-
neering, pages 45–55, New York, NY, USA, 2004.
ACM Press.

[34] Daniel Zeng, Hsinchun Chen, Chunju Tseng, Cather-
ine Larson, Millincent Eidson, Ivan Gotham, Cecil
Lynch, and Michael Ascher. Intelligence and Secu-
rity Informatics, chapter West Nile Virus and Bo-
tulism Portal: A Case Study in Infectious Disease
Informatics, pages 28–41. Springer, 2004.

12


